# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from safetensors.torch import load_file from transformers import AutoModelForCausalLM from peft import BOFTConfig, PeftModel, get_peft_model from peft.utils import infer_device class TestBoft: device = infer_device() def test_boft_state_dict(self, tmp_path): # see #2050 # ensure that the boft_P buffer is not stored in the checkpoint file and is not necessary to load the model # correctly torch.manual_seed(0) inputs = torch.arange(10).view(-1, 1).to(self.device) model_id = "hf-internal-testing/tiny-random-OPTForCausalLM" model = AutoModelForCausalLM.from_pretrained(model_id).to(self.device) model.eval() output_base = model(inputs).logits config = BOFTConfig(init_weights=False) model = get_peft_model(model, config) model.eval() output_peft = model(inputs).logits atol, rtol = 1e-5, 1e-8 # sanity check: loading boft changed the output assert not torch.allclose(output_base, output_peft, atol=atol, rtol=rtol) model.save_pretrained(tmp_path) del model # check that the boft_P buffer is not present state_dict = load_file(tmp_path / "adapter_model.safetensors") assert not any("boft_P" in key for key in state_dict) # sanity check: the model still produces the same output after loading model = AutoModelForCausalLM.from_pretrained(model_id).to(self.device) model = PeftModel.from_pretrained(model, tmp_path) output_loaded = model(inputs).logits assert torch.allclose(output_peft, output_loaded, atol=atol, rtol=rtol) def test_boft_old_checkpoint_including_boft_P(self, tmp_path): # see #2050 # This test exists to ensure that after the boft_P buffer was made non-persistent, old checkpoints can still be # loaded successfully. torch.manual_seed(0) inputs = torch.arange(10).view(-1, 1).to(self.device) model_id = "hf-internal-testing/tiny-random-OPTForCausalLM" model = AutoModelForCausalLM.from_pretrained(model_id).to(self.device) # first create the expected output config = BOFTConfig(init_weights=False) model = get_peft_model(model, config) model.eval() output_peft = model(inputs).logits del model model = AutoModelForCausalLM.from_pretrained(model_id).to(self.device) # checkpoint from before the PR whose state_dict still contains boft_P hub_id = "peft-internal-testing/boft-tiny-opt-peft-v0.12" model = PeftModel.from_pretrained(model, hub_id) output_old = model(inputs).logits atol, rtol = 1e-5, 1e-8 assert torch.allclose(output_peft, output_old, atol=atol, rtol=rtol)