# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import os import pickle import tempfile import warnings import pytest from peft import ( AdaLoraConfig, AdaptionPromptConfig, BOFTConfig, BoneConfig, C3AConfig, FourierFTConfig, HRAConfig, IA3Config, LNTuningConfig, LoHaConfig, LoKrConfig, LoraConfig, MissConfig, MultitaskPromptTuningConfig, OFTConfig, PeftConfig, PeftType, PolyConfig, PrefixTuningConfig, PromptEncoder, PromptEncoderConfig, PromptTuningConfig, RoadConfig, ShiraConfig, TaskType, TrainableTokensConfig, VBLoRAConfig, VeraConfig, XLoraConfig, ) PEFT_MODELS_TO_TEST = [("peft-internal-testing/tiny-opt-lora-revision", "test")] # Config classes and their mandatory parameters ALL_CONFIG_CLASSES = ( (AdaLoraConfig, {"total_step": 1}), (AdaptionPromptConfig, {}), (BOFTConfig, {}), (BoneConfig, {}), (C3AConfig, {}), (FourierFTConfig, {}), (HRAConfig, {}), (IA3Config, {}), (LNTuningConfig, {}), (LoHaConfig, {}), (LoKrConfig, {}), (LoraConfig, {}), (MissConfig, {}), (MultitaskPromptTuningConfig, {}), (PolyConfig, {}), (PrefixTuningConfig, {}), (PromptEncoderConfig, {}), (PromptTuningConfig, {}), (RoadConfig, {}), (ShiraConfig, {}), (TrainableTokensConfig, {}), (VeraConfig, {}), (VBLoRAConfig, {}), (XLoraConfig, {"hidden_size": 32, "adapters": {}}), ) class TestPeftConfig: @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_methods(self, config_class, mandatory_kwargs): r""" Test if all configs have the expected methods. Here we test - to_dict - save_pretrained - from_pretrained - from_json_file """ # test if all configs have the expected methods config = config_class(**mandatory_kwargs) assert hasattr(config, "to_dict") assert hasattr(config, "save_pretrained") assert hasattr(config, "from_pretrained") assert hasattr(config, "from_json_file") @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) @pytest.mark.parametrize("valid_task_type", list(TaskType) + [None]) def test_valid_task_type(self, config_class, mandatory_kwargs, valid_task_type): r""" Test if all configs work correctly for all valid task types """ config_class(task_type=valid_task_type, **mandatory_kwargs) @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_invalid_task_type(self, config_class, mandatory_kwargs): r""" Test if all configs correctly raise the defined error message for invalid task types. """ invalid_task_type = "invalid-task-type" with pytest.raises( ValueError, match=f"Invalid task type: '{invalid_task_type}'. Must be one of the following task types: {', '.join(TaskType)}.", ): config_class(task_type=invalid_task_type, **mandatory_kwargs) def test_from_peft_type(self): r""" Test if the config is correctly loaded using: - from_peft_type """ from peft.mapping import PEFT_TYPE_TO_CONFIG_MAPPING for peft_type in PeftType: expected_cls = PEFT_TYPE_TO_CONFIG_MAPPING[peft_type] mandatory_config_kwargs = {} if expected_cls == AdaLoraConfig: mandatory_config_kwargs = {"total_step": 1} config = PeftConfig.from_peft_type(peft_type=peft_type, **mandatory_config_kwargs) assert type(config) is expected_cls @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_from_pretrained(self, config_class, mandatory_kwargs): r""" Test if the config is correctly loaded using: - from_pretrained """ for model_name, revision in PEFT_MODELS_TO_TEST: # Test we can load config from delta config_class.from_pretrained(model_name, revision=revision) @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_save_pretrained(self, config_class, mandatory_kwargs): r""" Test if the config is correctly saved and loaded using - save_pretrained """ config = config_class(**mandatory_kwargs) with tempfile.TemporaryDirectory() as tmp_dirname: config.save_pretrained(tmp_dirname) config_from_pretrained = config_class.from_pretrained(tmp_dirname) assert config.to_dict() == config_from_pretrained.to_dict() @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_from_json_file(self, config_class, mandatory_kwargs): config = config_class(**mandatory_kwargs) with tempfile.TemporaryDirectory() as tmp_dirname: config.save_pretrained(tmp_dirname) config_path = os.path.join(tmp_dirname, "adapter_config.json") config_from_json = config_class.from_json_file(config_path) assert config.to_dict() == config_from_json # Also test with a runtime_config entry -- they should be ignored, even if they # were accidentally saved to disk config_from_json["runtime_config"] = {"ephemeral_gpu_offload": True} json.dump(config_from_json, open(config_path, "w")) config_from_json = config_class.from_json_file(config_path) assert config.to_dict() == config_from_json @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_to_dict(self, config_class, mandatory_kwargs): r""" Test if the config can be correctly converted to a dict using: - to_dict """ config = config_class(**mandatory_kwargs) assert isinstance(config.to_dict(), dict) @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_from_pretrained_cache_dir(self, config_class, mandatory_kwargs): r""" Test if the config is correctly loaded with extra kwargs """ with tempfile.TemporaryDirectory() as tmp_dirname: for model_name, revision in PEFT_MODELS_TO_TEST: # Test we can load config from delta config_class.from_pretrained(model_name, revision=revision, cache_dir=tmp_dirname) def test_from_pretrained_cache_dir_remote(self): r""" Test if the config is correctly loaded with a checkpoint from the hub """ with tempfile.TemporaryDirectory() as tmp_dirname: PeftConfig.from_pretrained("ybelkada/test-st-lora", cache_dir=tmp_dirname) assert "models--ybelkada--test-st-lora" in os.listdir(tmp_dirname) @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_save_pretrained_with_runtime_config(self, config_class, mandatory_kwargs): r""" Test if the config correctly removes runtime config when saving """ with tempfile.TemporaryDirectory() as tmp_dirname: for model_name, revision in PEFT_MODELS_TO_TEST: cfg = config_class.from_pretrained(model_name, revision=revision) # NOTE: cfg is always a LoraConfig here, because the configuration of the loaded model was a LoRA. # Hence we can expect a runtime_config to exist regardless of config_class. cfg.runtime_config.ephemeral_gpu_offload = True cfg.save_pretrained(tmp_dirname) cfg = config_class.from_pretrained(tmp_dirname) assert not cfg.runtime_config.ephemeral_gpu_offload @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_set_attributes(self, config_class, mandatory_kwargs): # manually set attributes and check if they are correctly written config = config_class(peft_type="test", **mandatory_kwargs) # save pretrained with tempfile.TemporaryDirectory() as tmp_dirname: config.save_pretrained(tmp_dirname) config_from_pretrained = config_class.from_pretrained(tmp_dirname) assert config.to_dict() == config_from_pretrained.to_dict() @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_config_copy(self, config_class, mandatory_kwargs): # see https://github.com/huggingface/peft/issues/424 config = config_class(**mandatory_kwargs) copied = copy.copy(config) assert config.to_dict() == copied.to_dict() @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_config_deepcopy(self, config_class, mandatory_kwargs): # see https://github.com/huggingface/peft/issues/424 config = config_class(**mandatory_kwargs) copied = copy.deepcopy(config) assert config.to_dict() == copied.to_dict() @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_config_pickle_roundtrip(self, config_class, mandatory_kwargs): # see https://github.com/huggingface/peft/issues/424 config = config_class(**mandatory_kwargs) copied = pickle.loads(pickle.dumps(config)) assert config.to_dict() == copied.to_dict() def test_prompt_encoder_warning_num_layers(self): # This test checks that if a prompt encoder config is created with an argument that is ignored, there should be # warning. However, there should be no warning if the default value is used. kwargs = { "num_virtual_tokens": 20, "num_transformer_submodules": 1, "token_dim": 768, "encoder_hidden_size": 768, } # there should be no warning with just default argument for encoder_num_layer config = PromptEncoderConfig(**kwargs) with warnings.catch_warnings(): PromptEncoder(config) # when changing encoder_num_layer, there should be a warning for MLP since that value is not used config = PromptEncoderConfig(encoder_num_layers=123, **kwargs) with pytest.warns(UserWarning) as record: PromptEncoder(config) expected_msg = "for MLP, the argument `encoder_num_layers` is ignored. Exactly 2 MLP layers are used." assert str(record.list[0].message) == expected_msg @pytest.mark.parametrize( "config_class", [LoHaConfig, LoraConfig, IA3Config, OFTConfig, BOFTConfig, HRAConfig, VBLoRAConfig] ) def test_save_pretrained_with_target_modules(self, config_class): # See #1041, #1045 config = config_class(target_modules=["a", "list"]) with tempfile.TemporaryDirectory() as tmp_dirname: config.save_pretrained(tmp_dirname) config_from_pretrained = config_class.from_pretrained(tmp_dirname) assert config.to_dict() == config_from_pretrained.to_dict() # explicit test that target_modules should be converted to set assert isinstance(config_from_pretrained.target_modules, set) def test_regex_with_layer_indexing_lora(self): # This test checks that an error is raised if `target_modules` is a regex expression and `layers_to_transform` or # `layers_pattern` are not None invalid_config1 = {"target_modules": ".*foo", "layers_to_transform": [0]} invalid_config2 = {"target_modules": ".*foo", "layers_pattern": ["bar"]} valid_config = {"target_modules": ["foo"], "layers_pattern": ["bar"], "layers_to_transform": [0]} with pytest.raises(ValueError, match="`layers_to_transform` cannot be used when `target_modules` is a str."): LoraConfig(**invalid_config1) with pytest.raises(ValueError, match="`layers_pattern` cannot be used when `target_modules` is a str."): LoraConfig(**invalid_config2) # should run without errors LoraConfig(**valid_config) def test_ia3_is_feedforward_subset_invalid_config(self): # This test checks that the IA3 config raises a value error if the feedforward_modules argument # is not a subset of the target_modules argument # an example invalid config invalid_config = {"target_modules": ["k", "v"], "feedforward_modules": ["q"]} with pytest.raises(ValueError, match="^`feedforward_modules` should be a subset of `target_modules`$"): IA3Config(**invalid_config) def test_ia3_is_feedforward_subset_valid_config(self): # This test checks that the IA3 config is created without errors with valid arguments. # feedforward_modules should be a subset of target_modules if both are lists # an example valid config with regex expressions. valid_config_regex_exp = { "target_modules": ".*.(SelfAttention|EncDecAttention|DenseReluDense).*(q|v|wo)$", "feedforward_modules": ".*.DenseReluDense.wo$", } # an example valid config with module lists. valid_config_list = {"target_modules": ["k", "v", "wo"], "feedforward_modules": ["wo"]} # should run without errors IA3Config(**valid_config_regex_exp) IA3Config(**valid_config_list) def test_adalora_config_r_warning(self): # This test checks that a warning is raised when r is set other than default in AdaLoraConfig # No warning should be raised when initializing AdaLoraConfig with default values. kwargs = {"peft_type": "ADALORA", "task_type": "SEQ_2_SEQ_LM", "init_r": 12, "lora_alpha": 32, "total_step": 1} # Test that no warning is raised with default initialization with warnings.catch_warnings(): warnings.simplefilter("error") try: AdaLoraConfig(**kwargs) except Warning: pytest.fail("AdaLoraConfig raised a warning with default initialization.") # Test that a warning is raised when r != 8 in AdaLoraConfig with pytest.warns(UserWarning, match="Note that `r` is not used in AdaLora and will be ignored."): AdaLoraConfig(r=10, total_step=1) def test_adalora_config_correct_timing_still_works(self): pass @pytest.mark.parametrize( "timing_kwargs", [ {"total_step": 100, "tinit": 0, "tfinal": 0}, {"total_step": 100, "tinit": 10, "tfinal": 10}, {"total_step": 100, "tinit": 79, "tfinal": 20}, {"total_step": 100, "tinit": 80, "tfinal": 19}, ], ) def test_adalora_config_valid_timing_works(self, timing_kwargs): # Make sure that passing correct timing values is not prevented by faulty config checks. AdaLoraConfig(**timing_kwargs) # does not raise def test_adalora_config_invalid_total_step_raises(self): with pytest.raises(ValueError) as e: AdaLoraConfig(total_step=None) assert "AdaLoRA does not work when `total_step` is None, supply a value > 0." in str(e) @pytest.mark.parametrize( "timing_kwargs", [ {"total_step": 100, "tinit": 20, "tfinal": 80}, {"total_step": 100, "tinit": 80, "tfinal": 20}, {"total_step": 10, "tinit": 20, "tfinal": 0}, {"total_step": 10, "tinit": 0, "tfinal": 10}, {"total_step": 10, "tinit": 10, "tfinal": 0}, {"total_step": 10, "tinit": 20, "tfinal": 0}, {"total_step": 10, "tinit": 20, "tfinal": 20}, {"total_step": 10, "tinit": 0, "tfinal": 20}, ], ) def test_adalora_config_timing_bounds_error(self, timing_kwargs): # Check if the user supplied timing values that will certainly fail because it breaks # AdaLoRA assumptions. with pytest.raises(ValueError) as e: AdaLoraConfig(**timing_kwargs) assert "The supplied schedule values don't allow for a budgeting phase" in str(e) @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_from_pretrained_forward_compatible(self, config_class, mandatory_kwargs, tmp_path, recwarn): """ Make it possible to load configs that contain unknown keys by ignoring them. The idea is to make PEFT configs forward-compatible with future versions of the library. """ config = config_class(**mandatory_kwargs) config.save_pretrained(tmp_path) # add a spurious key to the config with open(tmp_path / "adapter_config.json") as f: config_dict = json.load(f) config_dict["foobar"] = "baz" config_dict["spam"] = 123 with open(tmp_path / "adapter_config.json", "w") as f: json.dump(config_dict, f) msg = f"Unexpected keyword arguments ['foobar', 'spam'] for class {config_class.__name__}, these are ignored." config_from_pretrained = config_class.from_pretrained(tmp_path) expected_num_warnings = 1 # TODO: remove once Bone is removed in v0.19.0 if config_class == BoneConfig: expected_num_warnings = 2 # Bone has 1 more warning about it being deprecated assert len(recwarn) == expected_num_warnings assert recwarn.list[-1].message.args[0].startswith(msg) assert "foo" not in config_from_pretrained.to_dict() assert "spam" not in config_from_pretrained.to_dict() assert config.to_dict() == config_from_pretrained.to_dict() assert isinstance(config_from_pretrained, config_class) @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_from_pretrained_forward_compatible_load_from_peft_config( self, config_class, mandatory_kwargs, tmp_path, recwarn ): """Exact same test as before, but instead of using LoraConfig.from_pretrained, AdaLoraconfig.from_pretrained, etc. use PeftConfig.from_pretrained. This covers a previously existing bug where only the known arguments from PeftConfig would be used instead of the more specific config (which is known thanks to the peft_type attribute). """ config = config_class(**mandatory_kwargs) config.save_pretrained(tmp_path) # add a spurious key to the config with open(tmp_path / "adapter_config.json") as f: config_dict = json.load(f) config_dict["foobar"] = "baz" config_dict["spam"] = 123 with open(tmp_path / "adapter_config.json", "w") as f: json.dump(config_dict, f) msg = f"Unexpected keyword arguments ['foobar', 'spam'] for class {config_class.__name__}, these are ignored." config_from_pretrained = PeftConfig.from_pretrained(tmp_path) # <== use PeftConfig here expected_num_warnings = 1 # TODO: remove once Bone is removed in v0.19.0 if config_class == BoneConfig: expected_num_warnings = 2 # Bone has 1 more warning about it being deprecated assert len(recwarn) == expected_num_warnings assert recwarn.list[-1].message.args[0].startswith(msg) assert "foo" not in config_from_pretrained.to_dict() assert "spam" not in config_from_pretrained.to_dict() assert config.to_dict() == config_from_pretrained.to_dict() assert isinstance(config_from_pretrained, config_class) @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_from_pretrained_sanity_check(self, config_class, mandatory_kwargs, tmp_path): """Following up on the previous test about forward compatibility, we *don't* want any random json to be accepted as a PEFT config. There should be a minimum set of required keys. """ non_peft_json = {"foo": "bar", "baz": 123} with open(tmp_path / "adapter_config.json", "w") as f: json.dump(non_peft_json, f) msg = f"The {config_class.__name__} config that is trying to be loaded is missing required keys: {{'peft_type'}}." with pytest.raises(TypeError, match=msg): config_class.from_pretrained(tmp_path) def test_lora_config_layers_to_transform_validation(self): """Test that specifying layers_pattern without layers_to_transform raises an error""" with pytest.raises( ValueError, match="When `layers_pattern` is specified, `layers_to_transform` must also be specified." ): LoraConfig(r=8, lora_alpha=16, target_modules=["query", "value"], layers_pattern="model.layers") # Test that specifying both layers_to_transform and layers_pattern works fine config = LoraConfig( r=8, lora_alpha=16, target_modules=["query", "value"], layers_to_transform=[0, 1, 2], layers_pattern="model.layers", ) assert config.layers_to_transform == [0, 1, 2] assert config.layers_pattern == "model.layers" # Test that not specifying either works fine config = LoraConfig( r=8, lora_alpha=16, target_modules=["query", "value"], ) assert config.layers_to_transform is None assert config.layers_pattern is None @pytest.mark.parametrize("version", ["0.10", "0.17.0", "1"]) @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_peft_version_is_stored(self, version, config_class, mandatory_kwargs, monkeypatch, tmp_path): # Check that the PEFT version is automatically stored in/restored from the config file. from peft import config monkeypatch.setattr(config, "__version__", version) peft_config = config_class(**mandatory_kwargs) assert peft_config.peft_version == version peft_config.save_pretrained(tmp_path) with open(tmp_path / "adapter_config.json") as f: config_dict = json.load(f) assert config_dict["peft_version"] == version # ensure that the version from the config is being loaded, not just the current version monkeypatch.setattr(config, "__version__", "0.1.another-version") # load from config config_loaded = PeftConfig.from_pretrained(tmp_path) assert config_loaded.peft_version == version # load from json config_path = tmp_path / "adapter_config.json" config_json = PeftConfig.from_json_file(str(config_path)) assert config_json["peft_version"] == version @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_peft_version_is_dev_version(self, config_class, mandatory_kwargs, monkeypatch, tmp_path): # When a dev version of PEFT is installed, the actual state of PEFT is ambiguous. Therefore, try to determine # the commit hash too and store it as part of the version string. from peft import config version = "0.15.0.dev7" monkeypatch.setattr(config, "__version__", version) def fake_commit_hash(pkg_name): return "abcdef012345" monkeypatch.setattr(config, "_get_commit_hash", fake_commit_hash) peft_config = config_class(**mandatory_kwargs) expected_version = f"{version}@{fake_commit_hash('peft')}" assert peft_config.peft_version == expected_version peft_config.save_pretrained(tmp_path) config_loaded = PeftConfig.from_pretrained(tmp_path) assert config_loaded.peft_version == expected_version @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_peft_version_is_dev_version_but_commit_hash_cannot_be_determined( self, config_class, mandatory_kwargs, monkeypatch, tmp_path ): # There can be cases where PEFT is using a dev version but the commit hash cannot be determined. In this case, # just store the dev version string. from peft import config version = "0.15.0.dev7" monkeypatch.setattr(config, "__version__", version) def fake_commit_hash(pkg_name): return None monkeypatch.setattr(config, "_get_commit_hash", fake_commit_hash) peft_config = config_class(**mandatory_kwargs) assert peft_config.peft_version == version + "@UNKNOWN" peft_config.save_pretrained(tmp_path) config_loaded = PeftConfig.from_pretrained(tmp_path) assert config_loaded.peft_version == version + "@UNKNOWN" @pytest.mark.parametrize("config_class, mandatory_kwargs", ALL_CONFIG_CLASSES) def test_peft_version_warn_when_commit_hash_errors(self, config_class, mandatory_kwargs, monkeypatch, tmp_path): # We try to get the PEFT commit hash if a dev version is installed. But in case there is any kind of error # there, we don't want user code to break. Instead, the code should run and a version without commit hash should # be recorded. In addition, there should be a warning. from peft import config version = "0.15.0.dev7" monkeypatch.setattr(config, "__version__", version) def fake_commit_hash_raises(pkg_name): raise Exception("Error for testing purpose") monkeypatch.setattr(config, "_get_commit_hash", fake_commit_hash_raises) msg = "A dev version of PEFT is used but there was an error while trying to determine the commit hash" with pytest.warns(UserWarning, match=msg): peft_config = config_class(**mandatory_kwargs) assert peft_config.peft_version == version + "@UNKNOWN"