Spaces:
Sleeping
Sleeping
FaYo
commited on
Commit
·
cef4afc
1
Parent(s):
55a6480
demo
Browse files- model/.gitattributes +21 -0
- model/1_Pooling/config.json +7 -0
- model/openvino/README.md +164 -0
model/.gitattributes
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
unigram.json filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
.git/lfs/objects/8a/01/8a016203ad4fe42aaad6e9329f70e4ea2ea19d4e14e43f1a36ec140233e604ef filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
model/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
| 7 |
+
}
|
model/openvino/README.md
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- multilingual
|
| 4 |
+
- ar
|
| 5 |
+
- bg
|
| 6 |
+
- ca
|
| 7 |
+
- cs
|
| 8 |
+
- da
|
| 9 |
+
- de
|
| 10 |
+
- el
|
| 11 |
+
- en
|
| 12 |
+
- es
|
| 13 |
+
- et
|
| 14 |
+
- fa
|
| 15 |
+
- fi
|
| 16 |
+
- fr
|
| 17 |
+
- gl
|
| 18 |
+
- gu
|
| 19 |
+
- he
|
| 20 |
+
- hi
|
| 21 |
+
- hr
|
| 22 |
+
- hu
|
| 23 |
+
- hy
|
| 24 |
+
- id
|
| 25 |
+
- it
|
| 26 |
+
- ja
|
| 27 |
+
- ka
|
| 28 |
+
- ko
|
| 29 |
+
- ku
|
| 30 |
+
- lt
|
| 31 |
+
- lv
|
| 32 |
+
- mk
|
| 33 |
+
- mn
|
| 34 |
+
- mr
|
| 35 |
+
- ms
|
| 36 |
+
- my
|
| 37 |
+
- nb
|
| 38 |
+
- nl
|
| 39 |
+
- pl
|
| 40 |
+
- pt
|
| 41 |
+
- ro
|
| 42 |
+
- ru
|
| 43 |
+
- sk
|
| 44 |
+
- sl
|
| 45 |
+
- sq
|
| 46 |
+
- sr
|
| 47 |
+
- sv
|
| 48 |
+
- th
|
| 49 |
+
- tr
|
| 50 |
+
- uk
|
| 51 |
+
- ur
|
| 52 |
+
- vi
|
| 53 |
+
license: apache-2.0
|
| 54 |
+
library_name: sentence-transformers
|
| 55 |
+
tags:
|
| 56 |
+
- sentence-transformers
|
| 57 |
+
- feature-extraction
|
| 58 |
+
- sentence-similarity
|
| 59 |
+
- transformers
|
| 60 |
+
language_bcp47:
|
| 61 |
+
- fr-ca
|
| 62 |
+
- pt-br
|
| 63 |
+
- zh-cn
|
| 64 |
+
- zh-tw
|
| 65 |
+
pipeline_tag: sentence-similarity
|
| 66 |
+
---
|
| 67 |
+
|
| 68 |
+
# sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
| 69 |
+
|
| 70 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
## Usage (Sentence-Transformers)
|
| 75 |
+
|
| 76 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 77 |
+
|
| 78 |
+
```
|
| 79 |
+
pip install -U sentence-transformers
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
Then you can use the model like this:
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
from sentence_transformers import SentenceTransformer
|
| 86 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 87 |
+
|
| 88 |
+
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
| 89 |
+
embeddings = model.encode(sentences)
|
| 90 |
+
print(embeddings)
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
## Usage (HuggingFace Transformers)
|
| 96 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
| 97 |
+
|
| 98 |
+
```python
|
| 99 |
+
from transformers import AutoTokenizer, AutoModel
|
| 100 |
+
import torch
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
| 104 |
+
def mean_pooling(model_output, attention_mask):
|
| 105 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
| 106 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 107 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# Sentences we want sentence embeddings for
|
| 111 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 112 |
+
|
| 113 |
+
# Load model from HuggingFace Hub
|
| 114 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
| 115 |
+
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
| 116 |
+
|
| 117 |
+
# Tokenize sentences
|
| 118 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 119 |
+
|
| 120 |
+
# Compute token embeddings
|
| 121 |
+
with torch.no_grad():
|
| 122 |
+
model_output = model(**encoded_input)
|
| 123 |
+
|
| 124 |
+
# Perform pooling. In this case, max pooling.
|
| 125 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 126 |
+
|
| 127 |
+
print("Sentence embeddings:")
|
| 128 |
+
print(sentence_embeddings)
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
## Evaluation Results
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
## Full Model Architecture
|
| 142 |
+
```
|
| 143 |
+
SentenceTransformer(
|
| 144 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 145 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
| 146 |
+
)
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
## Citing & Authors
|
| 150 |
+
|
| 151 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
| 152 |
+
|
| 153 |
+
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
| 154 |
+
```bibtex
|
| 155 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 156 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 157 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 158 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 159 |
+
month = "11",
|
| 160 |
+
year = "2019",
|
| 161 |
+
publisher = "Association for Computational Linguistics",
|
| 162 |
+
url = "http://arxiv.org/abs/1908.10084",
|
| 163 |
+
}
|
| 164 |
+
```
|