CSRC-Car-Manual-RAG / modules /integrate_personalized_learning.py
Bryceeee's picture
Upload 34 files
6a11527 verified
raw
history blame
13.3 kB
"""
Integrate personalized learning pathway functionality into Gradio interface
"""
import gradio as gr
import json
from datetime import datetime
from personalized_learning import (
UserProfilingSystem,
LearningPathGenerator,
AdaptiveLearningEngine
)
# Initialize system components
def initialize_personalized_learning(available_topics: list, client):
"""Initialize personalized learning system"""
user_profiling = UserProfilingSystem()
learning_path_generator = LearningPathGenerator(user_profiling, available_topics)
adaptive_engine = AdaptiveLearningEngine(user_profiling, learning_path_generator)
return user_profiling, learning_path_generator, adaptive_engine
# Create personalized learning path tab
def create_personalized_learning_tab(adaptive_engine, user_profiling, query_rag_model,
generate_multiple_choice_questions, client):
"""Create personalized learning path tab"""
with gr.TabItem("Personalized Learning Path"):
gr.Markdown("## 🎯 Your Personalized Learning Journey")
gr.Markdown("Get a customized learning path based on your knowledge profile and performance.")
# User ID input
with gr.Row():
user_id_input = gr.Textbox(
label="User ID",
placeholder="Enter your user ID (e.g., user_001)",
value="default_user"
)
load_profile_btn = gr.Button("Load My Profile")
# User profile display
with gr.Column(visible=False) as profile_container:
profile_summary = gr.Markdown()
with gr.Row():
with gr.Column():
gr.Markdown("### πŸ“Š Knowledge Profile")
knowledge_level_display = gr.JSON()
with gr.Column():
gr.Markdown("### πŸ“ˆ Learning Statistics")
learning_stats = gr.JSON()
# Learning path section
with gr.Row():
focus_areas_input = gr.CheckboxGroup(
label="Focus Areas (Optional)",
choices=[],
value=[],
interactive=True
)
generate_path_btn = gr.Button("Generate Learning Path", variant="primary")
# Learning path visualization
with gr.Column(visible=False) as path_container:
gr.Markdown("### πŸ—ΊοΈ Your Learning Path")
path_progress = gr.HTML()
path_visualization = gr.HTML()
# Current node information
with gr.Row():
with gr.Column():
current_node_info = gr.Markdown()
with gr.Column():
next_action_btn = gr.Button("Start This Node", variant="primary")
skip_node_btn = gr.Button("Skip This Node")
# Recommendations section
with gr.Row():
with gr.Column():
gr.Markdown("### πŸ’‘ Recommendations")
recommendations_display = gr.JSON()
# Learning activity history
with gr.Column(visible=False) as history_container:
gr.Markdown("### πŸ“š Learning History")
learning_history = gr.Dataframe(
headers=["Date", "Topic", "Activity", "Score"],
interactive=False
)
# Handler functions
def load_user_profile(user_id):
"""Load user profile"""
if not user_id:
return (
gr.update(visible=False), # profile_container
"", # profile_summary
{}, # knowledge_level_display
{}, # learning_stats
[], # focus_areas_input choices
gr.update(visible=False) # path_container
)
profile = user_profiling.get_or_create_profile(user_id)
summary = user_profiling.get_profile_summary(user_id)
# Generate summary text
summary_text = f"""
### πŸ‘€ User Profile: {user_id}
**Learning Style:** {summary['learning_style'].title()}
**Learning Pace:** {summary['learning_pace'].title()}
**Overall Progress:** {summary['overall_progress']:.1%}
**Total Questions Asked:** {summary['total_questions']}
**Total Tests Completed:** {summary['total_tests']}
**Strong Areas:** {', '.join(summary['strong_areas']) if summary['strong_areas'] else 'None yet'}
**Areas Needing Improvement:** {', '.join(summary['weak_areas']) if summary['weak_areas'] else 'None yet'}
"""
# Prepare knowledge level data
knowledge_data = summary['knowledge_level']
if not knowledge_data:
knowledge_data = {"No topics learned yet": 0.0}
# Prepare statistics data
stats_data = {
"Total Questions": summary['total_questions'],
"Total Tests": summary['total_tests'],
"Preferred Topics": summary['preferred_topics'][:5] if summary['preferred_topics'] else [],
"Overall Progress": f"{summary['overall_progress']:.1%}"
}
# Update focus areas options
all_topics = list(set(list(knowledge_data.keys()) +
summary['preferred_topics'] +
summary['weak_areas']))
return (
gr.update(visible=True),
summary_text,
knowledge_data,
stats_data,
all_topics,
gr.update(visible=False)
)
def generate_learning_path(user_id, focus_areas):
"""Generate learning path"""
if not user_id:
return (
gr.update(visible=False),
"",
"",
"",
{},
gr.update(visible=False)
)
path = adaptive_engine.create_or_update_path(user_id, focus_areas if focus_areas else None)
# Generate path visualization HTML
vis_data = adaptive_engine.get_path_visualization_data(user_id)
# Create progress bar
progress_html = f"""
<div style="width:100%; background-color:#f0f0f0; border-radius:5px; overflow:hidden; margin:20px 0;">
<div style="width:{path.completion_percentage*100}%; background-color:#4CAF50; height:30px; border-radius:5px; display:flex; align-items:center; justify-content:center; color:white; font-weight:bold;">
{path.completion_percentage*100:.1f}% Complete
</div>
</div>
<p><strong>Total Nodes:</strong> {len(path.nodes)} | <strong>Completed:</strong> {sum(1 for n in path.nodes if n.status == 'completed')} | <strong>Estimated Time:</strong> {path.estimated_total_time} minutes</p>
"""
# Create path visualization
path_html = "<div style='margin:20px 0;'>"
path_html += "<h4>Learning Path Structure:</h4>"
path_html += "<div style='display:flex; flex-direction:column; gap:10px;'>"
for i, node in enumerate(path.nodes):
status_color = {
"completed": "#4CAF50",
"in_progress": "#2196F3",
"pending": "#9E9E9E",
"skipped": "#FF9800"
}.get(node.status, "#9E9E9E")
is_current = i == path.current_node_index
highlight = "border: 3px solid #FF5722; padding: 10px;" if is_current else "padding: 10px;"
path_html += f"""
<div style='{highlight} background-color:white; border-left: 5px solid {status_color}; border-radius:5px; margin:5px 0;'>
<div style='display:flex; justify-content:space-between; align-items:center;'>
<div>
<strong>{node.topic}</strong> - {node.bloom_level.title()} ({node.content_type})
<br>
<small>Difficulty: {node.difficulty:.2f} | Time: {node.estimated_time} min</small>
</div>
<div style='color:{status_color}; font-weight:bold;'>
{node.status.title()}
</div>
</div>
</div>
"""
path_html += "</div></div>"
# Current node information
if path.current_node_index < len(path.nodes):
current_node = path.nodes[path.current_node_index]
current_node_info = f"""
### Current Learning Node
**Topic:** {current_node.topic}
**Bloom Level:** {current_node.bloom_level.title()}
**Content Type:** {current_node.content_type.title()}
**Difficulty:** {current_node.difficulty:.2f}
**Estimated Time:** {current_node.estimated_time} minutes
**Status:** {current_node.status.title()}
"""
else:
current_node_info = "### Learning Path Complete! πŸŽ‰"
# Get recommendations
recommendations = adaptive_engine.get_recommendations(user_id)
return (
gr.update(visible=True),
progress_html,
path_html,
current_node_info,
recommendations,
gr.update(visible=True)
)
def start_current_node(user_id):
"""Start current node"""
path = adaptive_engine.get_active_path(user_id)
if not path or path.current_node_index >= len(path.nodes):
return "No active node to start."
current_node = path.nodes[path.current_node_index]
return f"Starting learning node: {current_node.topic} - {current_node.bloom_level}"
# Bind events
load_profile_btn.click(
load_user_profile,
inputs=[user_id_input],
outputs=[profile_container, profile_summary, knowledge_level_display,
learning_stats, focus_areas_input, path_container]
)
generate_path_btn.click(
generate_learning_path,
inputs=[user_id_input, focus_areas_input],
outputs=[path_container, path_progress, path_visualization,
current_node_info, recommendations_display, history_container]
)
next_action_btn.click(
start_current_node,
inputs=[user_id_input],
outputs=[]
)
# Auto-load default user
user_id_input.change(
load_user_profile,
inputs=[user_id_input],
outputs=[profile_container, profile_summary, knowledge_level_display,
learning_stats, focus_areas_input, path_container]
)
return {
"adaptive_engine": adaptive_engine,
"user_profiling": user_profiling
}
# Integrate with existing testing functionality
def integrate_with_testing(adaptive_engine, user_profiling, test_results, user_id):
"""Integrate test results into personalized learning system"""
if not user_id or not test_results:
return
# Extract topic from test results (assuming test results contain topic information)
topic = test_results[0].get('topic', 'unknown') if test_results else 'unknown'
# Update user profile
profile = user_profiling.update_from_test_results(user_id, topic, test_results)
# Update learning path
path = adaptive_engine.get_active_path(user_id)
if path:
# Calculate average score
scores = [1.0 if r.get('is_correct', False) else 0.0 for r in test_results]
avg_score = sum(scores) / len(scores) if scores else 0.5
# Find corresponding node and mark as completed
for node in path.nodes:
if node.topic == topic and node.status == "in_progress":
adaptive_engine.complete_node(user_id, node.node_id, avg_score)
break
# Integrate with Q&A functionality
def integrate_with_qa(user_profiling, user_id, question):
"""Integrate Q&A history into personalized learning system"""
if not user_id or not question:
return
# Simple topic extraction (can be improved based on actual needs)
topic = None
if "distronic" in question.lower() or "distance" in question.lower():
topic = "DISTRONIC"
elif "lane" in question.lower():
topic = "Lane Change Assist"
elif "steering" in question.lower():
topic = "Steering Assist"
elif "stop" in question.lower() or "go" in question.lower():
topic = "Stop-and-Go Assist"
# Update user profile
user_profiling.update_from_question(user_id, question, topic)