Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
"""
|
| 2 |
-
Hugging Face Spaces Entry Point
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
import os
|
| 6 |
import sys
|
| 7 |
from pathlib import Path
|
| 8 |
-
import
|
| 9 |
-
from
|
| 10 |
|
| 11 |
# Add the current directory to Python path for Spaces environment
|
| 12 |
sys.path.insert(0, str(Path(__file__).parent))
|
|
@@ -47,31 +47,28 @@ except ImportError as e:
|
|
| 47 |
SCENARIO_CONTEXTUALIZATION_AVAILABLE = False
|
| 48 |
print(f"β οΈ Scenario contextualization modules not available: {e}")
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def timeout(seconds):
|
| 57 |
-
"""Context manager for timeout operations"""
|
| 58 |
-
def timeout_handler(signum, frame):
|
| 59 |
-
raise TimeoutError(f"Operation timed out after {seconds} seconds")
|
| 60 |
-
|
| 61 |
-
# Set the signal handler
|
| 62 |
-
old_handler = signal.signal(signal.SIGALRM, timeout_handler)
|
| 63 |
-
signal.alarm(seconds)
|
| 64 |
-
|
| 65 |
-
try:
|
| 66 |
-
yield
|
| 67 |
-
finally:
|
| 68 |
-
# Restore the old handler
|
| 69 |
-
signal.alarm(0)
|
| 70 |
-
signal.signal(signal.SIGALRM, old_handler)
|
| 71 |
|
| 72 |
|
| 73 |
def initialize_system(config: Config) -> dict:
|
| 74 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
print("π§ Initializing core components...")
|
| 76 |
|
| 77 |
# Initialize OpenAI client
|
|
@@ -122,62 +119,48 @@ def initialize_system(config: Config) -> dict:
|
|
| 122 |
print("π§ Initializing knowledge graph...")
|
| 123 |
knowledge_graph = KnowledgeGraphGenerator(client, vector_store_id, str(config.output_dir))
|
| 124 |
|
| 125 |
-
# Initialize
|
| 126 |
user_profiling = None
|
| 127 |
learning_path_generator = None
|
| 128 |
adaptive_engine = None
|
| 129 |
|
| 130 |
if PERSONALIZED_LEARNING_AVAILABLE:
|
| 131 |
try:
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
learning_path_generator = LearningPathGenerator(user_profiling, config.available_topics)
|
| 136 |
-
adaptive_engine = AdaptiveLearningEngine(user_profiling, learning_path_generator)
|
| 137 |
print("β
Personalized Learning System initialized!")
|
| 138 |
-
except TimeoutError:
|
| 139 |
-
print("β οΈ Personalized Learning System initialization timed out - skipping")
|
| 140 |
except Exception as e:
|
| 141 |
print(f"β οΈ Error initializing Personalized Learning System: {e}")
|
| 142 |
|
| 143 |
-
# Initialize proactive learning (if available) - with timeout
|
| 144 |
proactive_engine = None
|
| 145 |
if PROACTIVE_LEARNING_AVAILABLE and user_profiling:
|
| 146 |
try:
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
client, rag_engine, user_profiling, adaptive_engine, config.available_topics
|
| 151 |
-
)
|
| 152 |
print("β
Proactive Learning Assistance initialized!")
|
| 153 |
-
except TimeoutError:
|
| 154 |
-
print("β οΈ Proactive Learning Assistance initialization timed out - skipping")
|
| 155 |
except Exception as e:
|
| 156 |
print(f"β οΈ Error initializing Proactive Learning Assistance: {e}")
|
| 157 |
|
| 158 |
-
# Initialize scenario contextualization (if available) - with timeout
|
| 159 |
enhanced_rag_engine = None
|
| 160 |
if SCENARIO_CONTEXTUALIZATION_AVAILABLE:
|
| 161 |
try:
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
formatter=formatter
|
| 177 |
-
)
|
| 178 |
print("β
Scenario Contextualization initialized!")
|
| 179 |
-
except TimeoutError:
|
| 180 |
-
print("β οΈ Scenario Contextualization initialization timed out - skipping")
|
| 181 |
except Exception as e:
|
| 182 |
print(f"β οΈ Error initializing Scenario Contextualization: {e}")
|
| 183 |
|
|
@@ -197,41 +180,87 @@ def initialize_system(config: Config) -> dict:
|
|
| 197 |
}
|
| 198 |
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
def create_app():
|
| 201 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
print("=" * 60)
|
| 203 |
-
print("π CSRC Car Manual RAG System -
|
| 204 |
print("=" * 60)
|
| 205 |
|
| 206 |
# Load configuration
|
| 207 |
config = Config()
|
| 208 |
|
| 209 |
-
# Initialize system
|
| 210 |
try:
|
| 211 |
-
|
| 212 |
-
with timeout(90):
|
| 213 |
-
components = initialize_system(config)
|
| 214 |
-
except TimeoutError:
|
| 215 |
-
print("β System initialization timed out!")
|
| 216 |
-
import gradio as gr
|
| 217 |
-
error_msg = """
|
| 218 |
-
# β Initialization Timeout
|
| 219 |
-
|
| 220 |
-
The system took too long to initialize. This usually happens when:
|
| 221 |
-
1. Vector store creation is slow
|
| 222 |
-
2. Too many modules are being loaded at startup
|
| 223 |
-
|
| 224 |
-
**Suggested solutions:**
|
| 225 |
-
1. Reduce the number of modules loaded at startup
|
| 226 |
-
2. Use a smaller vector store
|
| 227 |
-
3. Implement lazy loading for optional features
|
| 228 |
-
"""
|
| 229 |
-
return gr.Interface(
|
| 230 |
-
fn=lambda: error_msg,
|
| 231 |
-
inputs=None,
|
| 232 |
-
outputs=gr.Markdown(),
|
| 233 |
-
title="CSRC Car Manual RAG System",
|
| 234 |
-
)
|
| 235 |
except Exception as e:
|
| 236 |
print(f"β Error initializing system: {e}")
|
| 237 |
import traceback
|
|
@@ -243,15 +272,7 @@ def create_app():
|
|
| 243 |
|
| 244 |
**Error:** {str(e)}
|
| 245 |
|
| 246 |
-
|
| 247 |
-
1. Check if OPENAI_API_KEY is set in Spaces Secrets (Settings > Secrets)
|
| 248 |
-
2. Ensure PDF files are in the `car_manual/` directory
|
| 249 |
-
3. Check the logs for more details
|
| 250 |
-
|
| 251 |
-
**Traceback:**
|
| 252 |
-
```
|
| 253 |
-
{traceback.format_exc()}
|
| 254 |
-
```
|
| 255 |
"""
|
| 256 |
|
| 257 |
return gr.Interface(
|
|
@@ -261,46 +282,39 @@ def create_app():
|
|
| 261 |
title="CSRC Car Manual RAG System",
|
| 262 |
)
|
| 263 |
|
| 264 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
print("\nπ Building Gradio interface...")
|
| 266 |
try:
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
proactive_engine=components["proactive_engine"]
|
| 277 |
-
)
|
| 278 |
-
|
| 279 |
-
print("π¦ Creating interface components...")
|
| 280 |
-
demo = interface_builder.create_interface()
|
| 281 |
-
print("β
Gradio interface created successfully!")
|
| 282 |
-
return demo
|
| 283 |
-
except TimeoutError:
|
| 284 |
-
print("β Gradio interface creation timed out!")
|
| 285 |
-
import gradio as gr
|
| 286 |
-
error_msg = """
|
| 287 |
-
# β Interface Creation Timeout
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
2. Complex initialization in component callbacks
|
| 292 |
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
return gr.Interface(
|
| 299 |
-
fn=lambda: error_msg,
|
| 300 |
-
inputs=None,
|
| 301 |
-
outputs=gr.Markdown(),
|
| 302 |
-
title="CSRC Car Manual RAG System",
|
| 303 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
except Exception as e:
|
| 305 |
print(f"β Error building Gradio interface: {e}")
|
| 306 |
import traceback
|
|
@@ -311,11 +325,6 @@ def create_app():
|
|
| 311 |
# β Interface Building Error
|
| 312 |
|
| 313 |
**Error:** {str(e)}
|
| 314 |
-
|
| 315 |
-
**Traceback:**
|
| 316 |
-
```
|
| 317 |
-
{traceback.format_exc()}
|
| 318 |
-
```
|
| 319 |
"""
|
| 320 |
|
| 321 |
return gr.Interface(
|
|
@@ -326,11 +335,16 @@ def create_app():
|
|
| 326 |
)
|
| 327 |
|
| 328 |
|
| 329 |
-
# Prevent multiple initializations
|
| 330 |
_app_instance = None
|
| 331 |
|
| 332 |
def get_app():
|
| 333 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
global _app_instance
|
| 335 |
if _app_instance is None:
|
| 336 |
print("π Creating new app instance...")
|
|
@@ -341,10 +355,15 @@ def get_app():
|
|
| 341 |
return _app_instance
|
| 342 |
|
| 343 |
|
| 344 |
-
# For Hugging Face Spaces
|
| 345 |
if __name__ == "__main__":
|
| 346 |
demo = get_app()
|
| 347 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
else:
|
| 349 |
# Module-level variable for Spaces auto-detection
|
| 350 |
demo = get_app()
|
|
|
|
| 1 |
"""
|
| 2 |
+
Performance-Optimized Hugging Face Spaces Entry Point
|
| 3 |
+
Solves slow response and loading issues
|
| 4 |
"""
|
| 5 |
import os
|
| 6 |
import sys
|
| 7 |
from pathlib import Path
|
| 8 |
+
import asyncio
|
| 9 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 10 |
|
| 11 |
# Add the current directory to Python path for Spaces environment
|
| 12 |
sys.path.insert(0, str(Path(__file__).parent))
|
|
|
|
| 47 |
SCENARIO_CONTEXTUALIZATION_AVAILABLE = False
|
| 48 |
print(f"β οΈ Scenario contextualization modules not available: {e}")
|
| 49 |
|
| 50 |
+
# Performance configuration
|
| 51 |
+
ENABLE_CACHING = True # Enable query caching
|
| 52 |
+
MAX_WORKERS = 4 # Thread pool size
|
| 53 |
+
QUERY_TIMEOUT = 30 # Query timeout in seconds
|
| 54 |
|
| 55 |
+
# Global thread pool for async processing
|
| 56 |
+
executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
| 57 |
|
| 58 |
+
# Simple in-memory cache for queries
|
| 59 |
+
query_cache = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
|
| 62 |
def initialize_system(config: Config) -> dict:
|
| 63 |
+
"""
|
| 64 |
+
Initialize the RAG system components with performance optimization
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
config: Configuration object
|
| 68 |
+
|
| 69 |
+
Returns:
|
| 70 |
+
Dictionary containing all initialized components
|
| 71 |
+
"""
|
| 72 |
print("π§ Initializing core components...")
|
| 73 |
|
| 74 |
# Initialize OpenAI client
|
|
|
|
| 119 |
print("π§ Initializing knowledge graph...")
|
| 120 |
knowledge_graph = KnowledgeGraphGenerator(client, vector_store_id, str(config.output_dir))
|
| 121 |
|
| 122 |
+
# Initialize optional modules (with reduced logging)
|
| 123 |
user_profiling = None
|
| 124 |
learning_path_generator = None
|
| 125 |
adaptive_engine = None
|
| 126 |
|
| 127 |
if PERSONALIZED_LEARNING_AVAILABLE:
|
| 128 |
try:
|
| 129 |
+
user_profiling = UserProfilingSystem()
|
| 130 |
+
learning_path_generator = LearningPathGenerator(user_profiling, config.available_topics)
|
| 131 |
+
adaptive_engine = AdaptiveLearningEngine(user_profiling, learning_path_generator)
|
|
|
|
|
|
|
| 132 |
print("β
Personalized Learning System initialized!")
|
|
|
|
|
|
|
| 133 |
except Exception as e:
|
| 134 |
print(f"β οΈ Error initializing Personalized Learning System: {e}")
|
| 135 |
|
|
|
|
| 136 |
proactive_engine = None
|
| 137 |
if PROACTIVE_LEARNING_AVAILABLE and user_profiling:
|
| 138 |
try:
|
| 139 |
+
proactive_engine = ProactiveLearningEngine(
|
| 140 |
+
client, rag_engine, user_profiling, adaptive_engine, config.available_topics
|
| 141 |
+
)
|
|
|
|
|
|
|
| 142 |
print("β
Proactive Learning Assistance initialized!")
|
|
|
|
|
|
|
| 143 |
except Exception as e:
|
| 144 |
print(f"β οΈ Error initializing Proactive Learning Assistance: {e}")
|
| 145 |
|
|
|
|
| 146 |
enhanced_rag_engine = None
|
| 147 |
if SCENARIO_CONTEXTUALIZATION_AVAILABLE:
|
| 148 |
try:
|
| 149 |
+
scenario_database = ScenarioDatabase()
|
| 150 |
+
feature_extractor = ADASFeatureExtractor(use_llm=False, client=client)
|
| 151 |
+
scenario_retriever = ScenarioRetriever(
|
| 152 |
+
scenario_database=scenario_database,
|
| 153 |
+
scenario_vector_store_id=None,
|
| 154 |
+
client=client
|
| 155 |
+
)
|
| 156 |
+
formatter = ConstructiveFormatter()
|
| 157 |
+
enhanced_rag_engine = EnhancedRAGEngine(
|
| 158 |
+
base_rag_engine=rag_engine,
|
| 159 |
+
scenario_retriever=scenario_retriever,
|
| 160 |
+
feature_extractor=feature_extractor,
|
| 161 |
+
formatter=formatter
|
| 162 |
+
)
|
|
|
|
|
|
|
| 163 |
print("β
Scenario Contextualization initialized!")
|
|
|
|
|
|
|
| 164 |
except Exception as e:
|
| 165 |
print(f"β οΈ Error initializing Scenario Contextualization: {e}")
|
| 166 |
|
|
|
|
| 180 |
}
|
| 181 |
|
| 182 |
|
| 183 |
+
def create_optimized_query_wrapper(rag_engine):
|
| 184 |
+
"""
|
| 185 |
+
Create an optimized query wrapper with caching, timeout, and async processing
|
| 186 |
+
|
| 187 |
+
Args:
|
| 188 |
+
rag_engine: The RAG query engine to wrap
|
| 189 |
+
|
| 190 |
+
Returns:
|
| 191 |
+
Optimized query function
|
| 192 |
+
"""
|
| 193 |
+
def query_with_optimization(question: str, use_cache: bool = True) -> str:
|
| 194 |
+
"""
|
| 195 |
+
Optimized query function with caching and timeout protection
|
| 196 |
+
|
| 197 |
+
Args:
|
| 198 |
+
question: User's question
|
| 199 |
+
use_cache: Whether to use cache (default: True)
|
| 200 |
+
|
| 201 |
+
Returns:
|
| 202 |
+
Answer string
|
| 203 |
+
"""
|
| 204 |
+
if not question or not question.strip():
|
| 205 |
+
return "Please enter a question."
|
| 206 |
+
|
| 207 |
+
# Normalize question for cache key
|
| 208 |
+
cache_key = question.strip().lower()
|
| 209 |
+
|
| 210 |
+
# Check cache
|
| 211 |
+
if use_cache and ENABLE_CACHING and cache_key in query_cache:
|
| 212 |
+
print(f"π Using cached result for: {question[:50]}...")
|
| 213 |
+
return query_cache[cache_key]
|
| 214 |
+
|
| 215 |
+
try:
|
| 216 |
+
print(f"π Processing query: {question[:50]}...")
|
| 217 |
+
|
| 218 |
+
# Execute query using thread pool (non-blocking)
|
| 219 |
+
future = executor.submit(rag_engine.query, question)
|
| 220 |
+
|
| 221 |
+
# Wait for result with timeout
|
| 222 |
+
result = future.result(timeout=QUERY_TIMEOUT)
|
| 223 |
+
|
| 224 |
+
# Cache the result
|
| 225 |
+
if ENABLE_CACHING:
|
| 226 |
+
query_cache[cache_key] = result
|
| 227 |
+
# Limit cache size
|
| 228 |
+
if len(query_cache) > 100:
|
| 229 |
+
# Remove oldest entry
|
| 230 |
+
query_cache.pop(next(iter(query_cache)))
|
| 231 |
+
|
| 232 |
+
print(f"β
Query completed successfully")
|
| 233 |
+
return result
|
| 234 |
+
|
| 235 |
+
except TimeoutError:
|
| 236 |
+
error_msg = "β±οΈ Query timeout. Please try a simpler question or try again later."
|
| 237 |
+
print(error_msg)
|
| 238 |
+
return error_msg
|
| 239 |
+
except Exception as e:
|
| 240 |
+
error_msg = f"β Error processing query: {str(e)}"
|
| 241 |
+
print(error_msg)
|
| 242 |
+
return error_msg
|
| 243 |
+
|
| 244 |
+
return query_with_optimization
|
| 245 |
+
|
| 246 |
+
|
| 247 |
def create_app():
|
| 248 |
+
"""
|
| 249 |
+
Create and return the optimized Gradio app for Hugging Face Spaces
|
| 250 |
+
|
| 251 |
+
Returns:
|
| 252 |
+
Gradio Blocks app
|
| 253 |
+
"""
|
| 254 |
print("=" * 60)
|
| 255 |
+
print("π CSRC Car Manual RAG System - Performance Optimized")
|
| 256 |
print("=" * 60)
|
| 257 |
|
| 258 |
# Load configuration
|
| 259 |
config = Config()
|
| 260 |
|
| 261 |
+
# Initialize system
|
| 262 |
try:
|
| 263 |
+
components = initialize_system(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
except Exception as e:
|
| 265 |
print(f"β Error initializing system: {e}")
|
| 266 |
import traceback
|
|
|
|
| 272 |
|
| 273 |
**Error:** {str(e)}
|
| 274 |
|
| 275 |
+
Please check the logs for more details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
"""
|
| 277 |
|
| 278 |
return gr.Interface(
|
|
|
|
| 282 |
title="CSRC Car Manual RAG System",
|
| 283 |
)
|
| 284 |
|
| 285 |
+
# Create optimized query wrapper
|
| 286 |
+
optimized_query = create_optimized_query_wrapper(components["rag_engine"])
|
| 287 |
+
|
| 288 |
+
# Replace original RAG engine query method with optimized version
|
| 289 |
+
original_query = components["rag_engine"].query
|
| 290 |
+
components["rag_engine"].query = optimized_query
|
| 291 |
+
|
| 292 |
+
# Build Gradio interface
|
| 293 |
print("\nπ Building Gradio interface...")
|
| 294 |
try:
|
| 295 |
+
interface_builder = GradioInterfaceBuilder(
|
| 296 |
+
rag_engine=components["rag_engine"],
|
| 297 |
+
question_generator=components["question_generator"],
|
| 298 |
+
knowledge_graph=components["knowledge_graph"],
|
| 299 |
+
config=components["config"],
|
| 300 |
+
user_profiling=components["user_profiling"],
|
| 301 |
+
adaptive_engine=components["adaptive_engine"],
|
| 302 |
+
proactive_engine=components["proactive_engine"]
|
| 303 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
+
print("π¦ Creating interface components...")
|
| 306 |
+
demo = interface_builder.create_interface()
|
|
|
|
| 307 |
|
| 308 |
+
# Enable queue for better performance
|
| 309 |
+
print("β‘ Enabling queue for better performance...")
|
| 310 |
+
demo.queue(
|
| 311 |
+
max_size=20, # Maximum queue size
|
| 312 |
+
default_concurrency_limit=5 # Concurrency limit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
)
|
| 314 |
+
|
| 315 |
+
print("β
Gradio interface created successfully!")
|
| 316 |
+
return demo
|
| 317 |
+
|
| 318 |
except Exception as e:
|
| 319 |
print(f"β Error building Gradio interface: {e}")
|
| 320 |
import traceback
|
|
|
|
| 325 |
# β Interface Building Error
|
| 326 |
|
| 327 |
**Error:** {str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
"""
|
| 329 |
|
| 330 |
return gr.Interface(
|
|
|
|
| 335 |
)
|
| 336 |
|
| 337 |
|
| 338 |
+
# Prevent multiple initializations using singleton pattern
|
| 339 |
_app_instance = None
|
| 340 |
|
| 341 |
def get_app():
|
| 342 |
+
"""
|
| 343 |
+
Get or create the app instance (singleton pattern)
|
| 344 |
+
|
| 345 |
+
Returns:
|
| 346 |
+
Gradio app instance
|
| 347 |
+
"""
|
| 348 |
global _app_instance
|
| 349 |
if _app_instance is None:
|
| 350 |
print("π Creating new app instance...")
|
|
|
|
| 355 |
return _app_instance
|
| 356 |
|
| 357 |
|
| 358 |
+
# For Hugging Face Spaces auto-detection
|
| 359 |
if __name__ == "__main__":
|
| 360 |
demo = get_app()
|
| 361 |
+
demo.launch(
|
| 362 |
+
server_name="0.0.0.0",
|
| 363 |
+
server_port=7860,
|
| 364 |
+
show_error=True, # Show detailed errors
|
| 365 |
+
favicon_path=None, # Skip favicon loading for faster startup
|
| 366 |
+
)
|
| 367 |
else:
|
| 368 |
# Module-level variable for Spaces auto-detection
|
| 369 |
demo = get_app()
|