Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,130 +1,93 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
|
| 3 |
-
# This file delays heavy model load until the first inference request to reduce build-time memory use.
|
| 4 |
-
|
| 5 |
-
import io
|
| 6 |
-
import requests
|
| 7 |
-
import traceback
|
| 8 |
-
from typing import Optional
|
| 9 |
from PIL import Image
|
| 10 |
import gradio as gr
|
| 11 |
import torch
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
model = None
|
| 16 |
-
tokenizer = None
|
| 17 |
-
image_processor = None
|
| 18 |
-
context_len = None
|
| 19 |
-
device = "cpu" # Spaces are CPU-only
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
MODEL_PATH = "bczhou/TinyLLaVA-1.5B"
|
|
|
|
| 23 |
DEFAULT_MAX_TOKENS = 128
|
| 24 |
-
DEFAULT_CONV_MODE = "v1"
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
# Import here after torch is installed by start.py (or already present)
|
| 32 |
-
from tinyllava.model.builder import load_pretrained_model
|
| 33 |
-
from tinyllava.mm_utils import get_model_name_from_path
|
| 34 |
-
from transformers import logging as hf_logging
|
| 35 |
-
hf_logging.set_verbosity_error()
|
| 36 |
-
except Exception as e:
|
| 37 |
-
raise RuntimeError(f"Failed to import TinyLLaVA or transformers: {e}")
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
model_name = get_model_name_from_path(MODEL_PATH)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
)
|
| 43 |
-
model.to(device)
|
| 44 |
-
model.eval()
|
| 45 |
-
_model_loaded = True
|
| 46 |
|
| 47 |
-
def load_image_from_url(url: str)
|
| 48 |
resp = requests.get(url, timeout=10)
|
| 49 |
resp.raise_for_status()
|
| 50 |
return Image.open(io.BytesIO(resp.content)).convert("RGB")
|
| 51 |
|
| 52 |
-
def
|
| 53 |
prompt_text = f"USER: <image>\n{(prompt or '').strip()}\nASSISTANT:"
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
| 58 |
|
| 59 |
-
def generate_text(prompt
|
| 60 |
-
max_new_tokens: int = DEFAULT_MAX_TOKENS, conv_mode: str = DEFAULT_CONV_MODE):
|
| 61 |
try:
|
| 62 |
-
|
| 63 |
-
if
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
image = load_image_from_url(image_url)
|
| 68 |
-
elif uploaded_image is not None:
|
| 69 |
-
image = uploaded_image
|
| 70 |
else:
|
| 71 |
-
return "No image provided.
|
| 72 |
-
|
| 73 |
-
inputs
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
}
|
| 80 |
-
|
| 81 |
-
outputs = model.generate(**inputs, **gen_kwargs)
|
| 82 |
-
|
| 83 |
-
# Decode outputs
|
| 84 |
-
if isinstance(outputs, torch.Tensor):
|
| 85 |
-
decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 86 |
-
elif isinstance(outputs, (list, tuple)):
|
| 87 |
-
decoded = tokenizer.batch_decode(outputs[0], skip_special_tokens=True)[0]
|
| 88 |
else:
|
| 89 |
-
decoded = str(
|
| 90 |
-
|
| 91 |
if "ASSISTANT:" in decoded:
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
reply = decoded.strip()
|
| 95 |
-
return reply
|
| 96 |
except Exception as e:
|
| 97 |
-
|
| 98 |
-
return f"Inference error: {e}\n\nTraceback:\n{tb}"
|
| 99 |
|
| 100 |
-
# Gradio UI
|
| 101 |
with gr.Blocks() as demo:
|
| 102 |
-
gr.Markdown("
|
| 103 |
with gr.Row():
|
| 104 |
with gr.Column(scale=2):
|
| 105 |
-
|
| 106 |
-
upload = gr.Image(label="Upload Image
|
| 107 |
-
url = gr.Textbox(label="Image URL
|
| 108 |
-
max_tokens = gr.Slider(
|
| 109 |
-
|
| 110 |
with gr.Column(scale=1):
|
| 111 |
-
preview = gr.Image(label="
|
| 112 |
-
out = gr.Textbox(label="
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
if url_text:
|
| 118 |
try:
|
| 119 |
-
return load_image_from_url(
|
| 120 |
-
except
|
| 121 |
return None
|
| 122 |
return None
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
run_btn.click(fn=generate_text, inputs=[prompt_input, upload, url, max_tokens], outputs=out)
|
| 128 |
|
| 129 |
if __name__ == "__main__":
|
| 130 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py - Gradio UI using vendored tinyllava
|
| 2 |
+
import io, requests, traceback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
|
| 7 |
+
from tinyllava.model import load_pretrained_model
|
| 8 |
+
from tinyllava.mm_utils import get_model_name_from_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Use CPU-friendly TinyLLaVA model recommended for Spaces
|
| 11 |
+
MODEL_PATH = "bczhou/TinyLLaVA-1.5B"
|
| 12 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
DEFAULT_MAX_TOKENS = 128
|
|
|
|
| 14 |
|
| 15 |
+
# Lazy load
|
| 16 |
+
_model = None
|
| 17 |
+
_tokenizer = None
|
| 18 |
+
_image_processor = None
|
| 19 |
+
_context_len = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
def lazy_load():
|
| 22 |
+
global _model, _tokenizer, _image_processor, _context_len
|
| 23 |
+
if _model is not None:
|
| 24 |
+
return
|
| 25 |
model_name = get_model_name_from_path(MODEL_PATH)
|
| 26 |
+
_tokenizer, _model, _image_processor, _context_len = load_pretrained_model(MODEL_PATH, model_name=model_name)
|
| 27 |
+
_model.to(DEVICE)
|
| 28 |
+
_model.eval()
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
def load_image_from_url(url: str):
|
| 31 |
resp = requests.get(url, timeout=10)
|
| 32 |
resp.raise_for_status()
|
| 33 |
return Image.open(io.BytesIO(resp.content)).convert("RGB")
|
| 34 |
|
| 35 |
+
def prepare_inputs(prompt: str, image: Image.Image):
|
| 36 |
prompt_text = f"USER: <image>\n{(prompt or '').strip()}\nASSISTANT:"
|
| 37 |
+
inputs = _tokenizer(prompt_text, return_tensors="pt").to(DEVICE)
|
| 38 |
+
if _image_processor is not None:
|
| 39 |
+
img_inputs = _image_processor(images=image, return_tensors="pt").to(DEVICE)
|
| 40 |
+
inputs.update(img_inputs)
|
| 41 |
+
return inputs
|
| 42 |
|
| 43 |
+
def generate_text(prompt, upload, url, max_new_tokens=DEFAULT_MAX_TOKENS):
|
|
|
|
| 44 |
try:
|
| 45 |
+
lazy_load()
|
| 46 |
+
if upload is None and url:
|
| 47 |
+
image = load_image_from_url(url)
|
| 48 |
+
elif upload is not None:
|
| 49 |
+
image = upload
|
|
|
|
|
|
|
|
|
|
| 50 |
else:
|
| 51 |
+
return "No image provided."
|
| 52 |
+
|
| 53 |
+
inputs = prepare_inputs(prompt, image)
|
| 54 |
+
gen = _model.generate(**inputs, max_new_tokens=int(max_new_tokens), num_beams=1, temperature=0.0)
|
| 55 |
+
if isinstance(gen, torch.Tensor):
|
| 56 |
+
decoded = _tokenizer.batch_decode(gen, skip_special_tokens=True)[0]
|
| 57 |
+
elif isinstance(gen, (list, tuple)):
|
| 58 |
+
decoded = _tokenizer.batch_decode(gen[0], skip_special_tokens=True)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
else:
|
| 60 |
+
decoded = str(gen)
|
|
|
|
| 61 |
if "ASSISTANT:" in decoded:
|
| 62 |
+
return decoded.split("ASSISTANT:")[-1].strip()
|
| 63 |
+
return decoded.strip()
|
|
|
|
|
|
|
| 64 |
except Exception as e:
|
| 65 |
+
return f"Inference error: {e}\n\n{traceback.format_exc()}"
|
|
|
|
| 66 |
|
|
|
|
| 67 |
with gr.Blocks() as demo:
|
| 68 |
+
gr.Markdown("TinyLLaVA (vendored loader) — CPU-friendly")
|
| 69 |
with gr.Row():
|
| 70 |
with gr.Column(scale=2):
|
| 71 |
+
prompt = gr.Textbox(label="Prompt (optional)")
|
| 72 |
+
upload = gr.Image(label="Upload Image", type="pil")
|
| 73 |
+
url = gr.Textbox(label="Image URL")
|
| 74 |
+
max_tokens = gr.Slider(32, 512, value=DEFAULT_MAX_TOKENS, step=32, label="Max new tokens")
|
| 75 |
+
btn = gr.Button("Generate")
|
| 76 |
with gr.Column(scale=1):
|
| 77 |
+
preview = gr.Image(label="Preview", type="pil")
|
| 78 |
+
out = gr.Textbox(label="Output", lines=8)
|
| 79 |
+
def update_preview(u, s):
|
| 80 |
+
if u is not None:
|
| 81 |
+
return u
|
| 82 |
+
if s:
|
|
|
|
| 83 |
try:
|
| 84 |
+
return load_image_from_url(s)
|
| 85 |
+
except:
|
| 86 |
return None
|
| 87 |
return None
|
| 88 |
+
upload.change(update_preview, [upload, url], preview)
|
| 89 |
+
url.change(update_preview, [upload, url], preview)
|
| 90 |
+
btn.click(generate_text, [prompt, upload, url, max_tokens], out)
|
|
|
|
|
|
|
| 91 |
|
| 92 |
if __name__ == "__main__":
|
| 93 |
demo.launch()
|