| import os | |
| import pathlib | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| repo_dir = pathlib.Path("Thin-Plate-Spline-Motion-Model").absolute() | |
| if not repo_dir.exists(): | |
| os.system("git clone https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model") | |
| os.chdir(repo_dir.name) | |
| if not (repo_dir / "checkpoints").exists(): | |
| os.system("mkdir checkpoints") | |
| if not (repo_dir / "checkpoints/vox.pth.tar").exists(): | |
| os.system("gdown 1-CKOjv_y_TzNe-dwQsjjeVxJUuyBAb5X -O checkpoints/vox.pth.tar") | |
| title = "# Thin-Plate Spline Motion Model for Image Animation" | |
| DESCRIPTION = '''### Gradio demo for <b>Thin-Plate Spline Motion Model for Image Animation</b>, CVPR 2022. <a href='https://arxiv.org/abs/2203.14367'>[Paper]</a><a href='https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model'>[Github Code]</a> | |
| <img id="overview" alt="overview" src="https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model/raw/main/assets/vox.gif" /> | |
| ''' | |
| FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.Image-Animation-using-Thin-Plate-Spline-Motion-Model" />' | |
| def get_style_image_path(style_name: str) -> str: | |
| base_path = 'assets' | |
| filenames = { | |
| 'source': 'source.png', | |
| 'driving': 'driving.mp4', | |
| } | |
| return f'{base_path}/{filenames[style_name]}' | |
| def get_style_image_markdown_text(style_name: str) -> str: | |
| url = get_style_image_path(style_name) | |
| return f'<img id="style-image" src="{url}" alt="style image">' | |
| def update_style_image(style_name: str) -> dict: | |
| text = get_style_image_markdown_text(style_name) | |
| return gr.Markdown.update(value=text) | |
| def inference(img, vid): | |
| if not os.path.exists('temp'): | |
| os.system('mkdir temp') | |
| img.save("temp/image.jpg", "JPEG") | |
| if torch.cuda.is_available(): | |
| os.system(f"python demo.py --config config/vox-256.yaml --checkpoint ./checkpoints/vox.pth.tar --source_image 'temp/image.jpg' --driving_video {vid} --result_video './temp/result.mp4'") | |
| else: | |
| os.system(f"python demo.py --config config/vox-256.yaml --checkpoint ./checkpoints/vox.pth.tar --source_image 'temp/image.jpg' --driving_video {vid} --result_video './temp/result.mp4' --cpu") | |
| return './temp/result.mp4' | |
| def main(): | |
| with gr.Blocks(css='style.css') as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Box(): | |
| gr.Markdown('''## Step 1 (Provide Input Face Image) | |
| - Drop an image containing a face to the **Input Image**. | |
| - If there are multiple faces in the image, use Edit button in the upper right corner and crop the input image beforehand. | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_image = gr.Image(label='Input Image', | |
| type="pil") | |
| with gr.Row(): | |
| paths = sorted(pathlib.Path('assets').glob('*.png')) | |
| gr.Examples(inputs=[input_image], | |
| examples=[[path.as_posix()] for path in paths]) | |
| with gr.Box(): | |
| gr.Markdown('''## Step 2 (Select Driving Video) | |
| - Select **Style Driving Video for the face image animation**. | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| driving_video = gr.Video(label='Driving Video', | |
| format="mp4") | |
| with gr.Row(): | |
| paths = sorted(pathlib.Path('assets').glob('*.mp4')) | |
| gr.Examples(inputs=[driving_video], | |
| examples=[[path.as_posix()] for path in paths]) | |
| with gr.Box(): | |
| gr.Markdown('''## Step 3 (Generate Animated Image based on the Video) | |
| - Hit the **Generate** button. (Note: On cpu-basic, it takes ~ 10 minutes to generate final results.) | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| generate_button = gr.Button('Generate') | |
| with gr.Column(): | |
| result = gr.Video(label="Output") | |
| gr.Markdown(FOOTER) | |
| generate_button.click(fn=inference, | |
| inputs=[ | |
| input_image, | |
| driving_video | |
| ], | |
| outputs=result) | |
| demo.queue(max_size=10).launch() | |
| if __name__ == '__main__': | |
| main() | |