Spaces:
Sleeping
Sleeping
| #--- START OF MODIFIED FILE app_fluxContext_Ltx/flux_kontext_helpers.py --- | |
| # flux_kontext_helpers.py | |
| # Módulo de serviço para o FluxKontext, com gestão de memória e revezamento de GPU. | |
| # Este arquivo é parte do projeto Euia-AducSdr e está sob a licença AGPL v3. | |
| # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos | |
| import torch | |
| from PIL import Image | |
| import gc | |
| from diffusers import FluxKontextPipeline | |
| import huggingface_hub | |
| import os | |
| import threading | |
| class FluxWorker: | |
| """ | |
| Representa uma única instância do pipeline FluxKontext, associada a uma GPU específica. | |
| O pipeline é carregado na CPU por padrão e movido para a GPU sob demanda. | |
| """ | |
| def __init__(self, device_id='cuda:0'): | |
| self.cpu_device = torch.device('cpu') | |
| self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu') | |
| print(f"FLUX Worker: Inicializando para o dispositivo {self.device} (carregando na CPU)...") | |
| self.pipe = None | |
| self._load_pipe_to_cpu() | |
| def _load_pipe_to_cpu(self): | |
| if self.pipe is None: | |
| print("FLUX Worker: Carregando modelo FluxKontext para a CPU...") | |
| self.pipe = FluxKontextPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16 | |
| ).to(self.cpu_device) | |
| print("FLUX Worker: Modelo FluxKontext pronto (na CPU).") | |
| def to_gpu(self): | |
| """Move o pipeline para a GPU designada.""" | |
| if self.device.type == 'cpu': return | |
| print(f"FLUX Worker: Movendo modelo para {self.device}...") | |
| self.pipe.to(self.device) | |
| print(f"FLUX Worker: Modelo na GPU {self.device}.") | |
| def to_cpu(self): | |
| """Move o pipeline de volta para a CPU e limpa a memória da GPU.""" | |
| if self.device.type == 'cpu': return | |
| print(f"FLUX Worker: Descarregando modelo da GPU {self.device}...") | |
| self.pipe.to(self.cpu_device) | |
| gc.collect() | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| print(f"FLUX Worker: GPU {self.device} limpa.") | |
| def _concatenate_images(self, images, direction="horizontal"): | |
| if not images: return None | |
| valid_images = [img.convert("RGB") for img in images if img is not None] | |
| if not valid_images: return None | |
| if len(valid_images) == 1: return valid_images[0] | |
| if direction == "horizontal": | |
| total_width = sum(img.width for img in valid_images) | |
| max_height = max(img.height for img in valid_images) | |
| concatenated = Image.new('RGB', (total_width, max_height)) | |
| x_offset = 0 | |
| for img in valid_images: | |
| y_offset = (max_height - img.height) // 2 | |
| concatenated.paste(img, (x_offset, y_offset)) | |
| x_offset += img.width | |
| else: | |
| max_width = max(img.width for img in valid_images) | |
| total_height = sum(img.height for img in valid_images) | |
| concatenated = Image.new('RGB', (max_width, total_height)) | |
| y_offset = 0 | |
| for img in valid_images: | |
| x_offset = (max_width - img.width) // 2 | |
| concatenated.paste(img, (x_offset, y_offset)) | |
| y_offset += img.height | |
| return concatenated | |
| def generate_image_internal(self, reference_images, prompt, width, height, seed=42): | |
| """A lógica real da geração de imagem, que espera estar na GPU.""" | |
| concatenated_image = self._concatenate_images(reference_images, "horizontal") | |
| if concatenated_image is None: | |
| raise ValueError("Nenhuma imagem de referência válida foi fornecida.") | |
| image = self.pipe( | |
| image=concatenated_image, | |
| prompt=prompt, | |
| guidance_scale=2.5, | |
| width=width, | |
| height=height, | |
| generator=torch.Generator(device="cpu").manual_seed(seed) | |
| ).images[0] | |
| return image | |
| class FluxPoolManager: | |
| """ | |
| Gerencia um pool de FluxWorkers, orquestrando um revezamento entre GPUs | |
| para permitir que a limpeza de uma GPU ocorra em paralelo com a computação em outra. | |
| """ | |
| def __init__(self, device_ids=['cuda:0', 'cuda:1']): | |
| print(f"FLUX POOL MANAGER: Criando workers para os dispositivos: {device_ids}") | |
| self.workers = [FluxWorker(device_id) for device_id in device_ids] | |
| self.current_worker_index = 0 | |
| self.lock = threading.Lock() | |
| self.last_cleanup_thread = None | |
| def _cleanup_worker(self, worker): | |
| """Função alvo para a thread de limpeza.""" | |
| print(f"FLUX CLEANUP THREAD: Iniciando limpeza da GPU {worker.device} em background...") | |
| worker.to_cpu() | |
| print(f"FLUX CLEANUP THREAD: Limpeza da GPU {worker.device} concluída.") | |
| def generate_image(self, reference_images, prompt, width, height, seed=42): | |
| worker_to_use = None | |
| try: | |
| with self.lock: | |
| if self.last_cleanup_thread and self.last_cleanup_thread.is_alive(): | |
| print("FLUX POOL MANAGER: Aguardando limpeza da GPU anterior...") | |
| self.last_cleanup_thread.join() | |
| print("FLUX POOL MANAGER: Limpeza anterior concluída.") | |
| worker_to_use = self.workers[self.current_worker_index] | |
| previous_worker_index = (self.current_worker_index - 1 + len(self.workers)) % len(self.workers) | |
| worker_to_cleanup = self.workers[previous_worker_index] | |
| cleanup_thread = threading.Thread(target=self._cleanup_worker, args=(worker_to_cleanup,)) | |
| cleanup_thread.start() | |
| self.last_cleanup_thread = cleanup_thread | |
| worker_to_use.to_gpu() | |
| self.current_worker_index = (self.current_worker_index + 1) % len(self.workers) | |
| print(f"FLUX POOL MANAGER: Gerando imagem em {worker_to_use.device}...") | |
| return worker_to_use.generate_image_internal( | |
| reference_images=reference_images, | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| seed=seed | |
| ) | |
| finally: | |
| # A limpeza do worker_to_use será feita na PRÓXIMA chamada a esta função, | |
| # permitindo que a computação do LTX ocorra em paralelo. | |
| pass | |
| # --- Instância Singleton --- | |
| print("Inicializando o Compositor de Cenas (FluxKontext Pool Manager)...") | |
| hf_token = os.getenv('HF_TOKEN') | |
| if hf_token: huggingface_hub.login(token=hf_token) | |
| # Pool do Flux usa cuda:0 e cuda:1 | |
| flux_kontext_singleton = FluxPoolManager(device_ids=['cuda:0', 'cuda:1']) | |
| print("Compositor de Cenas pronto.") | |
| #-- END OF MODIFIED FILE app_fluxContext_Ltx/flux_kontext_helpers.py --- |