Spaces:
Sleeping
Sleeping
Delete ltx_video/models/transformers/transformer3d.py
Browse files
ltx_video/models/transformers/transformer3d.py
DELETED
|
@@ -1,472 +0,0 @@
|
|
| 1 |
-
#-- START OF MODIFIED FILE app_fluxContext_Ltx/ ---
|
| 2 |
-
# Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py
|
| 3 |
-
import math
|
| 4 |
-
from dataclasses import dataclass
|
| 5 |
-
from typing import Any, Dict, List, Optional, Union
|
| 6 |
-
import os
|
| 7 |
-
import json
|
| 8 |
-
import glob
|
| 9 |
-
from pathlib import Path
|
| 10 |
-
|
| 11 |
-
import torch
|
| 12 |
-
import numpy as np
|
| 13 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 14 |
-
from diffusers.models.embeddings import PixArtAlphaTextProjection
|
| 15 |
-
from diffusers.models.modeling_utils import ModelMixin
|
| 16 |
-
from diffusers.models.normalization import AdaLayerNormSingle
|
| 17 |
-
from diffusers.utils import BaseOutput, is_torch_version
|
| 18 |
-
from diffusers.utils import logging
|
| 19 |
-
from torch import nn
|
| 20 |
-
from safetensors import safe_open
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
from ltx_video.models.transformers.attention import BasicTransformerBlock
|
| 24 |
-
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 25 |
-
|
| 26 |
-
from ltx_video.utils.diffusers_config_mapping import (
|
| 27 |
-
diffusers_and_ours_config_mapping,
|
| 28 |
-
make_hash_key,
|
| 29 |
-
TRANSFORMER_KEYS_RENAME_DICT,
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
logger = logging.get_logger(__name__)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
@dataclass
|
| 37 |
-
class Transformer3DModelOutput(BaseOutput):
|
| 38 |
-
"""
|
| 39 |
-
The output of [`Transformer2DModel`].
|
| 40 |
-
|
| 41 |
-
Args:
|
| 42 |
-
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
| 43 |
-
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
| 44 |
-
distributions for the unnoised latent pixels.
|
| 45 |
-
"""
|
| 46 |
-
|
| 47 |
-
sample: torch.FloatTensor
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
class Transformer3DModel(ModelMixin, ConfigMixin):
|
| 51 |
-
_supports_gradient_checkpointing = True
|
| 52 |
-
|
| 53 |
-
@register_to_config
|
| 54 |
-
def __init__(
|
| 55 |
-
self,
|
| 56 |
-
num_attention_heads: int = 16,
|
| 57 |
-
attention_head_dim: int = 88,
|
| 58 |
-
in_channels: Optional[int] = None,
|
| 59 |
-
out_channels: Optional[int] = None,
|
| 60 |
-
num_layers: int = 1,
|
| 61 |
-
dropout: float = 0.0,
|
| 62 |
-
norm_num_groups: int = 32,
|
| 63 |
-
cross_attention_dim: Optional[int] = None,
|
| 64 |
-
attention_bias: bool = False,
|
| 65 |
-
num_vector_embeds: Optional[int] = None,
|
| 66 |
-
activation_fn: str = "geglu",
|
| 67 |
-
num_embeds_ada_norm: Optional[int] = None,
|
| 68 |
-
use_linear_projection: bool = False,
|
| 69 |
-
only_cross_attention: bool = False,
|
| 70 |
-
double_self_attention: bool = False,
|
| 71 |
-
upcast_attention: bool = False,
|
| 72 |
-
adaptive_norm: str = "single_scale_shift", # 'single_scale_shift' or 'single_scale'
|
| 73 |
-
standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm'
|
| 74 |
-
norm_elementwise_affine: bool = True,
|
| 75 |
-
norm_eps: float = 1e-5,
|
| 76 |
-
attention_type: str = "default",
|
| 77 |
-
caption_channels: int = None,
|
| 78 |
-
use_tpu_flash_attention: bool = False, # if True uses the TPU attention offload ('flash attention')
|
| 79 |
-
qk_norm: Optional[str] = None,
|
| 80 |
-
positional_embedding_type: str = "rope",
|
| 81 |
-
positional_embedding_theta: Optional[float] = None,
|
| 82 |
-
positional_embedding_max_pos: Optional[List[int]] = None,
|
| 83 |
-
timestep_scale_multiplier: Optional[float] = None,
|
| 84 |
-
causal_temporal_positioning: bool = False, # For backward compatibility, will be deprecated
|
| 85 |
-
):
|
| 86 |
-
super().__init__()
|
| 87 |
-
self.use_tpu_flash_attention = (
|
| 88 |
-
use_tpu_flash_attention # FIXME: push config down to the attention modules
|
| 89 |
-
)
|
| 90 |
-
self.use_linear_projection = use_linear_projection
|
| 91 |
-
self.num_attention_heads = num_attention_heads
|
| 92 |
-
self.attention_head_dim = attention_head_dim
|
| 93 |
-
inner_dim = num_attention_heads * attention_head_dim
|
| 94 |
-
self.inner_dim = inner_dim
|
| 95 |
-
self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True)
|
| 96 |
-
self.positional_embedding_type = positional_embedding_type
|
| 97 |
-
self.positional_embedding_theta = positional_embedding_theta
|
| 98 |
-
self.positional_embedding_max_pos = positional_embedding_max_pos
|
| 99 |
-
self.use_rope = self.positional_embedding_type == "rope"
|
| 100 |
-
self.timestep_scale_multiplier = timestep_scale_multiplier
|
| 101 |
-
|
| 102 |
-
if self.positional_embedding_type == "absolute":
|
| 103 |
-
raise ValueError("Absolute positional embedding is no longer supported")
|
| 104 |
-
elif self.positional_embedding_type == "rope":
|
| 105 |
-
if positional_embedding_theta is None:
|
| 106 |
-
raise ValueError(
|
| 107 |
-
"If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined"
|
| 108 |
-
)
|
| 109 |
-
if positional_embedding_max_pos is None:
|
| 110 |
-
raise ValueError(
|
| 111 |
-
"If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined"
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
# 3. Define transformers blocks
|
| 115 |
-
self.transformer_blocks = nn.ModuleList(
|
| 116 |
-
[
|
| 117 |
-
BasicTransformerBlock(
|
| 118 |
-
inner_dim,
|
| 119 |
-
num_attention_heads,
|
| 120 |
-
attention_head_dim,
|
| 121 |
-
dropout=dropout,
|
| 122 |
-
cross_attention_dim=cross_attention_dim,
|
| 123 |
-
activation_fn=activation_fn,
|
| 124 |
-
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 125 |
-
attention_bias=attention_bias,
|
| 126 |
-
only_cross_attention=only_cross_attention,
|
| 127 |
-
double_self_attention=double_self_attention,
|
| 128 |
-
upcast_attention=upcast_attention,
|
| 129 |
-
adaptive_norm=adaptive_norm,
|
| 130 |
-
standardization_norm=standardization_norm,
|
| 131 |
-
norm_elementwise_affine=norm_elementwise_affine,
|
| 132 |
-
norm_eps=norm_eps,
|
| 133 |
-
attention_type=attention_type,
|
| 134 |
-
use_tpu_flash_attention=use_tpu_flash_attention,
|
| 135 |
-
qk_norm=qk_norm,
|
| 136 |
-
use_rope=self.use_rope,
|
| 137 |
-
)
|
| 138 |
-
for d in range(num_layers)
|
| 139 |
-
]
|
| 140 |
-
)
|
| 141 |
-
|
| 142 |
-
# 4. Define output layers
|
| 143 |
-
self.out_channels = in_channels if out_channels is None else out_channels
|
| 144 |
-
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
| 145 |
-
self.scale_shift_table = nn.Parameter(
|
| 146 |
-
torch.randn(2, inner_dim) / inner_dim**0.5
|
| 147 |
-
)
|
| 148 |
-
self.proj_out = nn.Linear(inner_dim, self.out_channels)
|
| 149 |
-
|
| 150 |
-
self.adaln_single = AdaLayerNormSingle(
|
| 151 |
-
inner_dim, use_additional_conditions=False
|
| 152 |
-
)
|
| 153 |
-
if adaptive_norm == "single_scale":
|
| 154 |
-
self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)
|
| 155 |
-
|
| 156 |
-
self.caption_projection = None
|
| 157 |
-
if caption_channels is not None:
|
| 158 |
-
self.caption_projection = PixArtAlphaTextProjection(
|
| 159 |
-
in_features=caption_channels, hidden_size=inner_dim
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
self.gradient_checkpointing = False
|
| 163 |
-
|
| 164 |
-
def set_use_tpu_flash_attention(self):
|
| 165 |
-
r"""
|
| 166 |
-
Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU
|
| 167 |
-
attention kernel.
|
| 168 |
-
"""
|
| 169 |
-
logger.info("ENABLE TPU FLASH ATTENTION -> TRUE")
|
| 170 |
-
self.use_tpu_flash_attention = True
|
| 171 |
-
# push config down to the attention modules
|
| 172 |
-
for block in self.transformer_blocks:
|
| 173 |
-
block.set_use_tpu_flash_attention()
|
| 174 |
-
|
| 175 |
-
def create_skip_layer_mask(
|
| 176 |
-
self,
|
| 177 |
-
batch_size: int,
|
| 178 |
-
num_conds: int,
|
| 179 |
-
ptb_index: int,
|
| 180 |
-
skip_block_list: Optional[List[int]] = None,
|
| 181 |
-
):
|
| 182 |
-
if skip_block_list is None or len(skip_block_list) == 0:
|
| 183 |
-
return None
|
| 184 |
-
num_layers = len(self.transformer_blocks)
|
| 185 |
-
mask = torch.ones(
|
| 186 |
-
(num_layers, batch_size * num_conds), device=self.device, dtype=self.dtype
|
| 187 |
-
)
|
| 188 |
-
for block_idx in skip_block_list:
|
| 189 |
-
mask[block_idx, ptb_index::num_conds] = 0
|
| 190 |
-
return mask
|
| 191 |
-
|
| 192 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
| 193 |
-
if hasattr(module, "gradient_checkpointing"):
|
| 194 |
-
module.gradient_checkpointing = value
|
| 195 |
-
|
| 196 |
-
def get_fractional_positions(self, indices_grid):
|
| 197 |
-
fractional_positions = torch.stack(
|
| 198 |
-
[
|
| 199 |
-
indices_grid[:, i] / self.positional_embedding_max_pos[i]
|
| 200 |
-
for i in range(3)
|
| 201 |
-
],
|
| 202 |
-
dim=-1,
|
| 203 |
-
)
|
| 204 |
-
return fractional_positions
|
| 205 |
-
|
| 206 |
-
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
|
| 207 |
-
dtype = torch.float32 # We need full precision in the freqs_cis computation.
|
| 208 |
-
dim = self.inner_dim
|
| 209 |
-
theta = self.positional_embedding_theta
|
| 210 |
-
|
| 211 |
-
fractional_positions = self.get_fractional_positions(indices_grid)
|
| 212 |
-
|
| 213 |
-
start = 1
|
| 214 |
-
end = theta
|
| 215 |
-
device = fractional_positions.device
|
| 216 |
-
if spacing == "exp":
|
| 217 |
-
indices = theta ** (
|
| 218 |
-
torch.linspace(
|
| 219 |
-
math.log(start, theta),
|
| 220 |
-
math.log(end, theta),
|
| 221 |
-
dim // 6,
|
| 222 |
-
device=device,
|
| 223 |
-
dtype=dtype,
|
| 224 |
-
)
|
| 225 |
-
)
|
| 226 |
-
indices = indices.to(dtype=dtype)
|
| 227 |
-
elif spacing == "exp_2":
|
| 228 |
-
indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim)
|
| 229 |
-
indices = indices.to(dtype=dtype)
|
| 230 |
-
elif spacing == "linear":
|
| 231 |
-
indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype)
|
| 232 |
-
elif spacing == "sqrt":
|
| 233 |
-
indices = torch.linspace(
|
| 234 |
-
start**2, end**2, dim // 6, device=device, dtype=dtype
|
| 235 |
-
).sqrt()
|
| 236 |
-
|
| 237 |
-
indices = indices * math.pi / 2
|
| 238 |
-
|
| 239 |
-
if spacing == "exp_2":
|
| 240 |
-
freqs = (
|
| 241 |
-
(indices * fractional_positions.unsqueeze(-1))
|
| 242 |
-
.transpose(-1, -2)
|
| 243 |
-
.flatten(2)
|
| 244 |
-
)
|
| 245 |
-
else:
|
| 246 |
-
freqs = (
|
| 247 |
-
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
|
| 248 |
-
.transpose(-1, -2)
|
| 249 |
-
.flatten(2)
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
|
| 253 |
-
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
|
| 254 |
-
if dim % 6 != 0:
|
| 255 |
-
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
|
| 256 |
-
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
|
| 257 |
-
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
|
| 258 |
-
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
|
| 259 |
-
return cos_freq.to(self.dtype), sin_freq.to(self.dtype)
|
| 260 |
-
|
| 261 |
-
def load_state_dict(
|
| 262 |
-
self,
|
| 263 |
-
state_dict: Dict,
|
| 264 |
-
*args,
|
| 265 |
-
**kwargs,
|
| 266 |
-
):
|
| 267 |
-
if any([key.startswith("model.diffusion_model.") for key in state_dict.keys()]):
|
| 268 |
-
state_dict = {
|
| 269 |
-
key.replace("model.diffusion_model.", ""): value
|
| 270 |
-
for key, value in state_dict.items()
|
| 271 |
-
if key.startswith("model.diffusion_model.")
|
| 272 |
-
}
|
| 273 |
-
super().load_state_dict(state_dict, *args, **kwargs)
|
| 274 |
-
|
| 275 |
-
@classmethod
|
| 276 |
-
def from_pretrained(
|
| 277 |
-
cls,
|
| 278 |
-
pretrained_model_path: Optional[Union[str, os.PathLike]],
|
| 279 |
-
*args,
|
| 280 |
-
**kwargs,
|
| 281 |
-
):
|
| 282 |
-
pretrained_model_path = Path(pretrained_model_path)
|
| 283 |
-
if pretrained_model_path.is_dir():
|
| 284 |
-
config_path = pretrained_model_path / "transformer" / "config.json"
|
| 285 |
-
with open(config_path, "r") as f:
|
| 286 |
-
config = make_hashable_key(json.load(f))
|
| 287 |
-
|
| 288 |
-
assert config in diffusers_and_ours_config_mapping, (
|
| 289 |
-
"Provided diffusers checkpoint config for transformer is not suppported. "
|
| 290 |
-
"We only support diffusers configs found in Lightricks/LTX-Video."
|
| 291 |
-
)
|
| 292 |
-
|
| 293 |
-
config = diffusers_and_ours_config_mapping[config]
|
| 294 |
-
state_dict = {}
|
| 295 |
-
ckpt_paths = (
|
| 296 |
-
pretrained_model_path
|
| 297 |
-
/ "transformer"
|
| 298 |
-
/ "diffusion_pytorch_model*.safetensors"
|
| 299 |
-
)
|
| 300 |
-
dict_list = glob.glob(str(ckpt_paths))
|
| 301 |
-
for dict_path in dict_list:
|
| 302 |
-
part_dict = {}
|
| 303 |
-
with safe_open(dict_path, framework="pt", device="cpu") as f:
|
| 304 |
-
for k in f.keys():
|
| 305 |
-
part_dict[k] = f.get_tensor(k)
|
| 306 |
-
state_dict.update(part_dict)
|
| 307 |
-
|
| 308 |
-
for key in list(state_dict.keys()):
|
| 309 |
-
new_key = key
|
| 310 |
-
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
|
| 311 |
-
new_key = new_key.replace(replace_key, rename_key)
|
| 312 |
-
state_dict[new_key] = state_dict.pop(key)
|
| 313 |
-
|
| 314 |
-
with torch.device("meta"):
|
| 315 |
-
transformer = cls.from_config(config)
|
| 316 |
-
transformer.load_state_dict(state_dict, assign=True, strict=True)
|
| 317 |
-
elif pretrained_model_path.is_file() and str(pretrained_model_path).endswith(
|
| 318 |
-
".safetensors"
|
| 319 |
-
):
|
| 320 |
-
comfy_single_file_state_dict = {}
|
| 321 |
-
with safe_open(pretrained_model_path, framework="pt", device="cpu") as f:
|
| 322 |
-
metadata = f.metadata()
|
| 323 |
-
for k in f.keys():
|
| 324 |
-
comfy_single_file_state_dict[k] = f.get_tensor(k)
|
| 325 |
-
configs = json.loads(metadata["config"])
|
| 326 |
-
transformer_config = configs["transformer"]
|
| 327 |
-
with torch.device("meta"):
|
| 328 |
-
transformer = Transformer3DModel.from_config(transformer_config)
|
| 329 |
-
transformer.load_state_dict(comfy_single_file_state_dict, assign=True)
|
| 330 |
-
return transformer
|
| 331 |
-
|
| 332 |
-
def forward(
|
| 333 |
-
self,
|
| 334 |
-
hidden_states: torch.Tensor,
|
| 335 |
-
indices_grid: torch.Tensor,
|
| 336 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 337 |
-
timestep: Optional[torch.LongTensor] = None,
|
| 338 |
-
class_labels: Optional[torch.LongTensor] = None,
|
| 339 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
| 340 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 341 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 342 |
-
skip_layer_mask: Optional[torch.Tensor] = None,
|
| 343 |
-
skip_layer_strategy: Optional[SkipLayerStrategy] = None,
|
| 344 |
-
return_dict: bool = True,
|
| 345 |
-
):
|
| 346 |
-
if not self.use_tpu_flash_attention:
|
| 347 |
-
if attention_mask is not None and attention_mask.ndim == 2:
|
| 348 |
-
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 349 |
-
attention_mask = attention_mask.unsqueeze(1)
|
| 350 |
-
|
| 351 |
-
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 352 |
-
encoder_attention_mask = (
|
| 353 |
-
1 - encoder_attention_mask.to(hidden_states.dtype)
|
| 354 |
-
) * -10000.0
|
| 355 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 356 |
-
|
| 357 |
-
# 1. Input
|
| 358 |
-
hidden_states = self.patchify_proj(hidden_states)
|
| 359 |
-
|
| 360 |
-
if self.timestep_scale_multiplier:
|
| 361 |
-
timestep = self.timestep_scale_multiplier * timestep
|
| 362 |
-
|
| 363 |
-
freqs_cis = self.precompute_freqs_cis(indices_grid)
|
| 364 |
-
|
| 365 |
-
batch_size = hidden_states.shape[0]
|
| 366 |
-
timestep, embedded_timestep = self.adaln_single(
|
| 367 |
-
timestep.flatten(),
|
| 368 |
-
{"resolution": None, "aspect_ratio": None},
|
| 369 |
-
batch_size=batch_size,
|
| 370 |
-
hidden_dtype=hidden_states.dtype,
|
| 371 |
-
)
|
| 372 |
-
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
|
| 373 |
-
embedded_timestep = embedded_timestep.view(
|
| 374 |
-
batch_size, -1, embedded_timestep.shape[-1]
|
| 375 |
-
)
|
| 376 |
-
|
| 377 |
-
if self.caption_projection is not None:
|
| 378 |
-
batch_size = hidden_states.shape[0]
|
| 379 |
-
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 380 |
-
encoder_hidden_states = encoder_hidden_states.view(
|
| 381 |
-
batch_size, -1, hidden_states.shape[-1]
|
| 382 |
-
)
|
| 383 |
-
|
| 384 |
-
# TeaCache Integration
|
| 385 |
-
if hasattr(self, 'enable_teacache') and self.enable_teacache:
|
| 386 |
-
ori_hidden_states = hidden_states.clone()
|
| 387 |
-
temb_ = embedded_timestep.clone()
|
| 388 |
-
inp = self.transformer_blocks[0].norm1(hidden_states.clone())
|
| 389 |
-
|
| 390 |
-
first_block = self.transformer_blocks[0]
|
| 391 |
-
modulated_inp = inp
|
| 392 |
-
if first_block.adaptive_norm in ["single_scale_shift", "single_scale"]:
|
| 393 |
-
num_ada_params = first_block.scale_shift_table.shape[0]
|
| 394 |
-
ada_values = first_block.scale_shift_table[None, None] + temb_.reshape(
|
| 395 |
-
batch_size, temb_.shape[1], num_ada_params, -1
|
| 396 |
-
)
|
| 397 |
-
if first_block.adaptive_norm == "single_scale_shift":
|
| 398 |
-
shift_msa, scale_msa, _, _, _, _ = ada_values.unbind(dim=2)
|
| 399 |
-
modulated_inp = inp * (1 + scale_msa) + shift_msa
|
| 400 |
-
else:
|
| 401 |
-
scale_msa, _, _, _ = ada_values.unbind(dim=2)
|
| 402 |
-
modulated_inp = inp * (1 + scale_msa)
|
| 403 |
-
|
| 404 |
-
should_calc = False
|
| 405 |
-
if self.cnt == 0 or self.cnt == self.num_steps - 1 or self.previous_modulated_input is None:
|
| 406 |
-
should_calc = True
|
| 407 |
-
self.accumulated_rel_l1_distance = 0
|
| 408 |
-
else:
|
| 409 |
-
coefficients = [2.14700694e+01, -1.28016453e+01, 2.31279151e+00, 7.92487521e-01, 9.69274326e-03]
|
| 410 |
-
rescale_func = np.poly1d(coefficients)
|
| 411 |
-
rel_l1_dist = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
|
| 412 |
-
self.accumulated_rel_l1_distance += rescale_func(rel_l1_dist)
|
| 413 |
-
|
| 414 |
-
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
| 415 |
-
should_calc = False
|
| 416 |
-
else:
|
| 417 |
-
should_calc = True
|
| 418 |
-
self.accumulated_rel_l1_distance = 0
|
| 419 |
-
|
| 420 |
-
self.previous_modulated_input = modulated_inp
|
| 421 |
-
self.cnt += 1
|
| 422 |
-
if self.cnt == self.num_steps:
|
| 423 |
-
self.cnt = 0
|
| 424 |
-
|
| 425 |
-
if not should_calc and self.previous_residual is not None:
|
| 426 |
-
hidden_states = ori_hidden_states + self.previous_residual
|
| 427 |
-
else:
|
| 428 |
-
# Execute original logic if cache is missed
|
| 429 |
-
temp_hidden_states = hidden_states
|
| 430 |
-
for block_idx, block in enumerate(self.transformer_blocks):
|
| 431 |
-
temp_hidden_states = block(
|
| 432 |
-
temp_hidden_states,
|
| 433 |
-
freqs_cis=freqs_cis,
|
| 434 |
-
attention_mask=attention_mask,
|
| 435 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 436 |
-
encoder_attention_mask=encoder_attention_mask,
|
| 437 |
-
timestep=timestep,
|
| 438 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
| 439 |
-
class_labels=class_labels,
|
| 440 |
-
skip_layer_mask=(skip_layer_mask[block_idx] if skip_layer_mask is not None else None),
|
| 441 |
-
skip_layer_strategy=skip_layer_strategy,
|
| 442 |
-
)
|
| 443 |
-
self.previous_residual = temp_hidden_states - ori_hidden_states
|
| 444 |
-
hidden_states = temp_hidden_states
|
| 445 |
-
else:
|
| 446 |
-
# Original path if TeaCache is disabled
|
| 447 |
-
for block_idx, block in enumerate(self.transformer_blocks):
|
| 448 |
-
hidden_states = block(
|
| 449 |
-
hidden_states,
|
| 450 |
-
freqs_cis=freqs_cis,
|
| 451 |
-
attention_mask=attention_mask,
|
| 452 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 453 |
-
encoder_attention_mask=encoder_attention_mask,
|
| 454 |
-
timestep=timestep,
|
| 455 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
| 456 |
-
class_labels=class_labels,
|
| 457 |
-
skip_layer_mask=(skip_layer_mask[block_idx] if skip_layer_mask is not None else None),
|
| 458 |
-
skip_layer_strategy=skip_layer_strategy,
|
| 459 |
-
)
|
| 460 |
-
|
| 461 |
-
# Final modulation and output
|
| 462 |
-
scale_shift_values = (self.scale_shift_table[None, None] + embedded_timestep[:, :, None])
|
| 463 |
-
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
| 464 |
-
hidden_states = self.norm_out(hidden_states)
|
| 465 |
-
hidden_states = hidden_states * (1 + scale) + shift
|
| 466 |
-
hidden_states = self.proj_out(hidden_states)
|
| 467 |
-
|
| 468 |
-
if not return_dict:
|
| 469 |
-
return (hidden_states,)
|
| 470 |
-
|
| 471 |
-
return Transformer3DModelOutput(sample=hidden_states)
|
| 472 |
-
#-- END OF MODIFIED FILE app_fluxContext_Ltx/ltx_video/models/transformers/transformer3d.py ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|