Spaces:
Sleeping
Sleeping
Delete teacache_helpers.py
Browse files- teacache_helpers.py +0 -153
teacache_helpers.py
DELETED
|
@@ -1,153 +0,0 @@
|
|
| 1 |
-
# teacache_helpers.py
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
import numpy as np
|
| 5 |
-
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 6 |
-
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
| 7 |
-
from typing import Any, Dict, Optional, Tuple
|
| 8 |
-
|
| 9 |
-
logger = logging.get_logger(__name__)
|
| 10 |
-
|
| 11 |
-
def teacache_forward(
|
| 12 |
-
self,
|
| 13 |
-
hidden_states: torch.Tensor,
|
| 14 |
-
indices_grid: torch.Tensor,
|
| 15 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 16 |
-
timestep: Optional[torch.LongTensor] = None,
|
| 17 |
-
class_labels: Optional[torch.LongTensor] = None,
|
| 18 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
| 19 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 20 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 21 |
-
skip_layer_mask: Optional[torch.Tensor] = None,
|
| 22 |
-
skip_layer_strategy: Optional[Any] = None, # Usando Any para compatibilidade
|
| 23 |
-
return_dict: bool = True,
|
| 24 |
-
) -> torch.Tensor:
|
| 25 |
-
|
| 26 |
-
# Lógica de controle do TeaCache
|
| 27 |
-
if not hasattr(self, 'enable_teacache') or not self.enable_teacache:
|
| 28 |
-
# Se TeaCache estiver desabilitado, chama a função forward original
|
| 29 |
-
# (Para simplicidade aqui, replicamos a lógica padrão. Em um cenário real, você poderia
|
| 30 |
-
# ter salvo a função original antes de fazer o patch).
|
| 31 |
-
# Esta parte replica a lógica de 'ltx_video/models/transformers/transformer3d.py'
|
| 32 |
-
if attention_mask is not None and attention_mask.ndim == 2:
|
| 33 |
-
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 34 |
-
attention_mask = attention_mask.unsqueeze(1)
|
| 35 |
-
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 36 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 37 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 38 |
-
|
| 39 |
-
hidden_states = self.patchify_proj(hidden_states)
|
| 40 |
-
if self.timestep_scale_multiplier:
|
| 41 |
-
timestep = self.timestep_scale_multiplier * timestep
|
| 42 |
-
|
| 43 |
-
freqs_cis = self.precompute_freqs_cis(indices_grid)
|
| 44 |
-
batch_size = hidden_states.shape[0]
|
| 45 |
-
timestep, embedded_timestep = self.adaln_single(
|
| 46 |
-
timestep.flatten(), {"resolution": None, "aspect_ratio": None},
|
| 47 |
-
batch_size=batch_size, hidden_dtype=hidden_states.dtype,
|
| 48 |
-
)
|
| 49 |
-
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
|
| 50 |
-
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1])
|
| 51 |
-
|
| 52 |
-
if self.caption_projection is not None:
|
| 53 |
-
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 54 |
-
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
| 55 |
-
|
| 56 |
-
for block_idx, block in enumerate(self.transformer_blocks):
|
| 57 |
-
hidden_states = block(
|
| 58 |
-
hidden_states, freqs_cis=freqs_cis, attention_mask=attention_mask,
|
| 59 |
-
encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask,
|
| 60 |
-
timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels,
|
| 61 |
-
skip_layer_mask=(skip_layer_mask[block_idx] if skip_layer_mask is not None else None),
|
| 62 |
-
skip_layer_strategy=skip_layer_strategy,
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
|
| 66 |
-
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
| 67 |
-
hidden_states = self.norm_out(hidden_states)
|
| 68 |
-
hidden_states = hidden_states * (1 + scale) + shift
|
| 69 |
-
hidden_states = self.proj_out(hidden_states)
|
| 70 |
-
|
| 71 |
-
if not return_dict: return (hidden_states,)
|
| 72 |
-
return Transformer2DModelOutput(sample=hidden_states)
|
| 73 |
-
|
| 74 |
-
# Lógica principal do TeaCache
|
| 75 |
-
lora_scale = 1.0
|
| 76 |
-
|
| 77 |
-
# Preparação dos embeddings e máscaras
|
| 78 |
-
image_rotary_emb = self.precompute_freqs_cis(indices_grid)
|
| 79 |
-
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 80 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 81 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 82 |
-
|
| 83 |
-
batch_size = hidden_states.size(0)
|
| 84 |
-
hidden_states = self.patchify_proj(hidden_states)
|
| 85 |
-
|
| 86 |
-
temb, embedded_timestep = self.adaln_single(
|
| 87 |
-
timestep.flatten(), {"resolution": None, "aspect_ratio": None},
|
| 88 |
-
batch_size=batch_size, hidden_dtype=hidden_states.dtype,
|
| 89 |
-
)
|
| 90 |
-
temb = temb.view(batch_size, -1, temb.size(-1))
|
| 91 |
-
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1))
|
| 92 |
-
|
| 93 |
-
if self.caption_projection is not None:
|
| 94 |
-
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 95 |
-
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1))
|
| 96 |
-
|
| 97 |
-
# Lógica de decisão do TeaCache (calcular ou reusar)
|
| 98 |
-
inp = hidden_states.clone()
|
| 99 |
-
temb_ = temb.clone()
|
| 100 |
-
inp = self.transformer_blocks[0].norm1(inp)
|
| 101 |
-
num_ada_params = self.transformer_blocks[0].scale_shift_table.shape[0]
|
| 102 |
-
ada_values = self.transformer_blocks[0].scale_shift_table[None, None] + temb_.reshape(batch_size, temb_.size(1), num_ada_params, -1)
|
| 103 |
-
|
| 104 |
-
if self.transformer_blocks[0].adaptive_norm == "single_scale_shift":
|
| 105 |
-
shift_msa, scale_msa, _, _, _, _ = ada_values.unbind(dim=2)
|
| 106 |
-
modulated_inp = inp * (1 + scale_msa) + shift_msa
|
| 107 |
-
else: # single_scale
|
| 108 |
-
scale_msa, _, _, _ = ada_values.unbind(dim=2)
|
| 109 |
-
modulated_inp = inp * (1 + scale_msa)
|
| 110 |
-
|
| 111 |
-
if self.cnt == 0 or self.cnt == self.num_steps - 1:
|
| 112 |
-
should_calc = True
|
| 113 |
-
self.accumulated_rel_l1_distance = 0
|
| 114 |
-
else:
|
| 115 |
-
coefficients = [2.14700694e+01, -1.28016453e+01, 2.31279151e+00, 7.92487521e-01, 9.69274326e-03]
|
| 116 |
-
rescale_func = np.poly1d(coefficients)
|
| 117 |
-
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
|
| 118 |
-
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
| 119 |
-
should_calc = False
|
| 120 |
-
else:
|
| 121 |
-
should_calc = True
|
| 122 |
-
self.accumulated_rel_l1_distance = 0
|
| 123 |
-
|
| 124 |
-
self.previous_modulated_input = modulated_inp
|
| 125 |
-
self.cnt += 1
|
| 126 |
-
if self.cnt == self.num_steps:
|
| 127 |
-
self.cnt = 0
|
| 128 |
-
|
| 129 |
-
# Execução do transformer
|
| 130 |
-
if not should_calc:
|
| 131 |
-
hidden_states += self.previous_residual
|
| 132 |
-
else:
|
| 133 |
-
ori_hidden_states = hidden_states.clone()
|
| 134 |
-
for block_idx, block in enumerate(self.transformer_blocks):
|
| 135 |
-
hidden_states = block(
|
| 136 |
-
hidden_states=hidden_states,
|
| 137 |
-
freqs_cis=image_rotary_emb,
|
| 138 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 139 |
-
timestep=temb,
|
| 140 |
-
encoder_attention_mask=encoder_attention_mask
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
|
| 144 |
-
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
| 145 |
-
hidden_states = self.norm_out(hidden_states)
|
| 146 |
-
hidden_states = hidden_states * (1 + scale) + shift
|
| 147 |
-
self.previous_residual = hidden_states - ori_hidden_states
|
| 148 |
-
|
| 149 |
-
output = self.proj_out(hidden_states)
|
| 150 |
-
|
| 151 |
-
if not return_dict:
|
| 152 |
-
return (output,)
|
| 153 |
-
return Transformer2DModelOutput(sample=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|