Spaces:
Sleeping
Sleeping
Delete app-v1.py
Browse files
app-v1.py
DELETED
|
@@ -1,301 +0,0 @@
|
|
| 1 |
-
# --- app.py (O Painel de Controle do Maestro - Depuração Focada) ---
|
| 2 |
-
# By Carlex & Gemini & DreamO
|
| 3 |
-
|
| 4 |
-
# ... (importações e inicializações inalteradas) ...
|
| 5 |
-
import gradio as gr
|
| 6 |
-
import torch
|
| 7 |
-
import os
|
| 8 |
-
import yaml
|
| 9 |
-
from PIL import Image
|
| 10 |
-
import shutil
|
| 11 |
-
import gc
|
| 12 |
-
import subprocess
|
| 13 |
-
import math
|
| 14 |
-
import google.generativeai as genai
|
| 15 |
-
import numpy as np
|
| 16 |
-
import imageio
|
| 17 |
-
from pathlib import Path
|
| 18 |
-
import huggingface_hub
|
| 19 |
-
import json
|
| 20 |
-
|
| 21 |
-
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, seed_everething, calculate_padding
|
| 22 |
-
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem
|
| 23 |
-
from dreamo_helpers import dreamo_generator_singleton
|
| 24 |
-
|
| 25 |
-
# ... (configurações e constantes inalteradas) ...
|
| 26 |
-
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
|
| 27 |
-
with open(config_file_path, "r") as file:
|
| 28 |
-
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
| 29 |
-
|
| 30 |
-
LTX_REPO = "Lightricks/LTX-Video"
|
| 31 |
-
models_dir = "downloaded_models_gradio_cpu_init"
|
| 32 |
-
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
| 33 |
-
WORKSPACE_DIR = "aduc_workspace"
|
| 34 |
-
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
|
| 35 |
-
|
| 36 |
-
VIDEO_WIDTH = 720
|
| 37 |
-
VIDEO_HEIGHT = 720
|
| 38 |
-
VIDEO_FPS = 24
|
| 39 |
-
VIDEO_DURATION_SECONDS = 4
|
| 40 |
-
VIDEO_TOTAL_FRAMES = VIDEO_DURATION_SECONDS * VIDEO_FPS
|
| 41 |
-
|
| 42 |
-
print("Baixando e criando pipelines LTX na CPU...")
|
| 43 |
-
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
|
| 44 |
-
pipeline_instance = create_ltx_video_pipeline(ckpt_path=distilled_model_actual_path, precision=PIPELINE_CONFIG_YAML["precision"], text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], sampler=PIPELINE_CONFIG_YAML["sampler"], device='cpu')
|
| 45 |
-
print("Modelos LTX prontos (na CPU).")
|
| 46 |
-
|
| 47 |
-
# --- Ato 3: As Partituras dos Músicos (Funções) ---
|
| 48 |
-
|
| 49 |
-
# ... (get_storyboard_from_director e run_keyframe_generation inalterados) ...
|
| 50 |
-
def get_storyboard_from_director(num_fragments: int, prompt: str, initial_image_path: str, progress=gr.Progress()):
|
| 51 |
-
progress(0.5, desc="[Diretor Gemini] Criando o storyboard...")
|
| 52 |
-
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
|
| 53 |
-
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
| 54 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
| 55 |
-
try:
|
| 56 |
-
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 57 |
-
prompt_file_path = os.path.join(script_dir, "prompts", "director_storyboard_v2.txt")
|
| 58 |
-
with open(prompt_file_path, "r", encoding="utf-8") as f: template = f.read()
|
| 59 |
-
except FileNotFoundError: raise gr.Error(f"Arquivo de prompt não encontrado em '{prompt_file_path}'!")
|
| 60 |
-
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments))
|
| 61 |
-
model = genai.GenerativeModel('gemini-2.5-flash')
|
| 62 |
-
img = Image.open(initial_image_path)
|
| 63 |
-
response = model.generate_content([director_prompt, img])
|
| 64 |
-
try:
|
| 65 |
-
cleaned_response = response.text.strip().replace("```json", "").replace("```", "")
|
| 66 |
-
if not cleaned_response: raise ValueError("A resposta do Gemini estava vazia após a limpeza.")
|
| 67 |
-
storyboard_data = json.loads(cleaned_response)
|
| 68 |
-
return storyboard_data.get("storyboard", [])
|
| 69 |
-
except (json.JSONDecodeError, ValueError) as e:
|
| 70 |
-
raise gr.Error(f"O Diretor retornou uma resposta inválida. Erro: {e}. Resposta Bruta: '{response.text}'")
|
| 71 |
-
|
| 72 |
-
def run_keyframe_generation(storyboard, ref_img_path_1, ref_img_path_2, ref_task_1, ref_task_2):
|
| 73 |
-
if not storyboard: raise gr.Error("Nenhum roteiro para gerar imagens-chave.")
|
| 74 |
-
if not ref_img_path_1: raise gr.Error("A Referência 1 é obrigatória.")
|
| 75 |
-
|
| 76 |
-
with Image.open(ref_img_path_1) as img:
|
| 77 |
-
width, height = img.size
|
| 78 |
-
width = (width // 32) * 32
|
| 79 |
-
height = (height // 32) * 32
|
| 80 |
-
|
| 81 |
-
keyframe_paths, log_history = [], ""
|
| 82 |
-
try:
|
| 83 |
-
dreamo_generator_singleton.to_gpu()
|
| 84 |
-
for i, prompt in enumerate(storyboard):
|
| 85 |
-
log_message = f"Pintando Cena {i+1}/{len(storyboard)} com DreamO ({width}x{height})..."
|
| 86 |
-
log_history += log_message + "\n"
|
| 87 |
-
yield {keyframe_log_output: gr.update(value=log_history)}
|
| 88 |
-
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_image_{i+1}.png")
|
| 89 |
-
image = dreamo_generator_singleton.generate_image_with_gpu_management(
|
| 90 |
-
ref_image1_np=np.array(Image.open(ref_img_path_1).convert("RGB")) if ref_img_path_1 else None,
|
| 91 |
-
ref_image2_np=np.array(Image.open(ref_img_path_2).convert("RGB")) if ref_img_path_2 else None,
|
| 92 |
-
ref_task1=ref_task_1, ref_task2=ref_task_2,
|
| 93 |
-
prompt=prompt, width=width, height=height
|
| 94 |
-
)
|
| 95 |
-
image.save(output_path)
|
| 96 |
-
keyframe_paths.append(output_path)
|
| 97 |
-
log_message = f"Cena {i+1} pintada."
|
| 98 |
-
log_history += log_message + "\n"
|
| 99 |
-
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=keyframe_paths), keyframe_images_state: keyframe_paths}
|
| 100 |
-
finally:
|
| 101 |
-
dreamo_generator_singleton.to_cpu()
|
| 102 |
-
|
| 103 |
-
log_history += "\nPintura de todas as cenas concluída!"
|
| 104 |
-
yield {keyframe_log_output: gr.update(value=log_history)}
|
| 105 |
-
|
| 106 |
-
def run_ltx_animation(current_fragment_index, motion_prompt, conditioning_items_data, width, height, seed, cfg, progress=gr.Progress()):
|
| 107 |
-
# ... (código inalterado)
|
| 108 |
-
progress(0, desc=f"[Animador LTX] Gerando Cena {current_fragment_index}...")
|
| 109 |
-
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}.mp4")
|
| 110 |
-
target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 111 |
-
try:
|
| 112 |
-
pipeline_instance.to(target_device)
|
| 113 |
-
conditioning_items = []
|
| 114 |
-
for (path, start_frame, strength) in conditioning_items_data:
|
| 115 |
-
tensor = load_image_to_tensor_with_resize_and_crop(path, height, width)
|
| 116 |
-
conditioning_items.append(ConditioningItem(tensor.to(target_device), start_frame, strength))
|
| 117 |
-
n_val = round((float(VIDEO_TOTAL_FRAMES) - 1.0) / 8.0)
|
| 118 |
-
actual_num_frames = int(n_val * 8 + 1)
|
| 119 |
-
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
|
| 120 |
-
padding_vals = calculate_padding(height, width, padded_h, padded_w)
|
| 121 |
-
for cond_item in conditioning_items: cond_item.media_item = torch.nn.functional.pad(cond_item.media_item, padding_vals)
|
| 122 |
-
timesteps = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps")
|
| 123 |
-
kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": VIDEO_FPS, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": timesteps, "conditioning_items": conditioning_items, "vae_per_channel_normalize": True, "decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"], "stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], "image_cond_noise_scale": 0.15, "is_video": True, "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"), "offload_to_cpu": False, "enhance_prompt": False}
|
| 124 |
-
result_tensor = pipeline_instance(**kwargs).images
|
| 125 |
-
pad_l, pad_r, pad_t, pad_b = padding_vals; slice_h, slice_w = (-pad_b if pad_b > 0 else None), (-pad_r if pad_r > 0 else None)
|
| 126 |
-
cropped_tensor = result_tensor[:, :, :VIDEO_TOTAL_FRAMES, pad_t:slice_h, pad_l:slice_w];
|
| 127 |
-
video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
|
| 128 |
-
with imageio.get_writer(output_path, fps=VIDEO_FPS, codec='libx264', quality=8) as writer:
|
| 129 |
-
for i, frame in enumerate(video_np): progress(i / len(video_np), desc=f"Renderizando frame {i+1}/{len(video_np)}..."); writer.append_data(frame)
|
| 130 |
-
return output_path
|
| 131 |
-
finally:
|
| 132 |
-
pipeline_instance.to('cpu'); gc.collect()
|
| 133 |
-
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 134 |
-
|
| 135 |
-
# <<<< FUNÇÃO DE PRODUÇÃO SIMPLIFICADA PARA DEPURAÇÃO >>>>
|
| 136 |
-
def run_full_video_production(storyboard, keyframe_image_paths, seed, cfg):
|
| 137 |
-
if not storyboard or not keyframe_image_paths: raise gr.Error("Roteiro e/ou imagens-chave estão faltando.")
|
| 138 |
-
if len(storyboard) != len(keyframe_image_paths): raise gr.Error("A contagem de prompts do roteiro e imagens-chave não coincide.")
|
| 139 |
-
|
| 140 |
-
with Image.open(keyframe_image_paths[0]) as img:
|
| 141 |
-
width, height = img.size
|
| 142 |
-
|
| 143 |
-
video_fragments, log_history = [], ""
|
| 144 |
-
num_keyframes = len(keyframe_image_paths)
|
| 145 |
-
|
| 146 |
-
n_val = round((float(VIDEO_TOTAL_FRAMES) - 1.0) / 8.0)
|
| 147 |
-
actual_num_frames = int(n_val * 8 + 1)
|
| 148 |
-
end_frame_index = actual_num_frames - 1
|
| 149 |
-
|
| 150 |
-
for i in range(num_keyframes - 1):
|
| 151 |
-
# ... (lógica de interpolação inalterada)
|
| 152 |
-
motion_prompt = storyboard[i]
|
| 153 |
-
start_image_path = keyframe_image_paths[i]
|
| 154 |
-
end_image_path = keyframe_image_paths[i+1]
|
| 155 |
-
log_message = f"Preparando Cena de Interpolação {i+1}/{num_keyframes}..."
|
| 156 |
-
log_history += log_message + "\n"
|
| 157 |
-
yield {video_production_log_output: gr.update(value=log_history), fragment_list_state: video_fragments}
|
| 158 |
-
conditioning_items_data = [(start_image_path, 0, 1.0), (end_image_path, end_frame_index, 1.0)]
|
| 159 |
-
log_message = f" -> De: {os.path.basename(start_image_path)} | Para: {os.path.basename(end_image_path)}"
|
| 160 |
-
log_history += log_message + "\n"
|
| 161 |
-
yield {video_production_log_output: gr.update(value=log_history), fragment_list_state: video_fragments}
|
| 162 |
-
fragment_path = run_ltx_animation(i + 1, motion_prompt, conditioning_items_data, width, height, seed, cfg)
|
| 163 |
-
video_fragments.append(fragment_path)
|
| 164 |
-
log_message = f"Cena {i+1} concluída."
|
| 165 |
-
log_history += log_message + "\n"
|
| 166 |
-
yield {video_production_log_output: gr.update(value=log_history), fragment_list_state: video_fragments}
|
| 167 |
-
|
| 168 |
-
if num_keyframes > 0:
|
| 169 |
-
# ... (lógica da cena final inalterada)
|
| 170 |
-
last_scene_index = num_keyframes - 1
|
| 171 |
-
last_motion_prompt = storyboard[last_scene_index]
|
| 172 |
-
last_image_path = keyframe_image_paths[last_scene_index]
|
| 173 |
-
log_message = f"Preparando Cena Final (Animação Livre) {num_keyframes}/{num_keyframes}..."
|
| 174 |
-
log_history += log_message + "\n"
|
| 175 |
-
yield {video_production_log_output: gr.update(value=log_history), fragment_list_state: video_fragments}
|
| 176 |
-
conditioning_items_data = [(last_image_path, 0, 1.0)]
|
| 177 |
-
log_message = f" -> Ponto de Partida: {os.path.basename(last_image_path)}"
|
| 178 |
-
log_history += log_message + "\n"
|
| 179 |
-
yield {video_production_log_output: gr.update(value=log_history), fragment_list_state: video_fragments}
|
| 180 |
-
fragment_path = run_ltx_animation(last_scene_index + 1, last_motion_prompt, conditioning_items_data, width, height, seed, cfg)
|
| 181 |
-
video_fragments.append(fragment_path)
|
| 182 |
-
log_message = f"Cena Final concluída."
|
| 183 |
-
log_history += log_message + "\n"
|
| 184 |
-
yield {video_production_log_output: gr.update(value=log_history), fragment_list_state: video_fragments}
|
| 185 |
-
|
| 186 |
-
log_history += "\nProdução de todas as cenas de vídeo concluída!"
|
| 187 |
-
yield {video_production_log_output: gr.update(value=log_history), fragment_list_state: video_fragments}
|
| 188 |
-
|
| 189 |
-
def concatenate_masterpiece(fragment_paths: list, progress=gr.Progress()):
|
| 190 |
-
# ... (código inalterado)
|
| 191 |
-
progress(0.5, desc="Montando a obra-prima final..."); list_file_path, final_output_path = os.path.join(WORKSPACE_DIR, "concat_list.txt"), os.path.join(WORKSPACE_DIR, "obra_prima_final.mp4")
|
| 192 |
-
with open(list_file_path, "w") as f:
|
| 193 |
-
for path in fragment_paths: f.write(f"file '{os.path.abspath(path)}'\n")
|
| 194 |
-
command = f"ffmpeg -y -f concat -safe 0 -i {list_file_path} -c copy {final_output_path}"
|
| 195 |
-
try: subprocess.run(command, shell=True, check=True, capture_output=True, text=True); return final_output_path
|
| 196 |
-
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao unir os vídeos: {e.stderr}")
|
| 197 |
-
|
| 198 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 199 |
-
# ... (UI inalterada)
|
| 200 |
-
gr.Markdown("# LTX Video - Storyboard em Vídeo (ADUC-SDR)\n*By Carlex & Gemini & DreamO*")
|
| 201 |
-
storyboard_state = gr.State([])
|
| 202 |
-
keyframe_images_state = gr.State([])
|
| 203 |
-
fragment_list_state = gr.State([])
|
| 204 |
-
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
|
| 205 |
-
os.makedirs(WORKSPACE_DIR)
|
| 206 |
-
|
| 207 |
-
with gr.Tabs():
|
| 208 |
-
with gr.TabItem("ETAPA 1: O DIRETOR (Roteiro Visual)"):
|
| 209 |
-
# ... (UI inalterada)
|
| 210 |
-
with gr.Row():
|
| 211 |
-
with gr.Column():
|
| 212 |
-
num_fragments_input = gr.Slider(2, 10, 4, step=1, label="Número de Cenas")
|
| 213 |
-
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
|
| 214 |
-
image_input = gr.Image(type="filepath", label="Imagem de Referência Principal")
|
| 215 |
-
director_button = gr.Button("▶️ 1. Gerar Roteiro Visual", variant="primary")
|
| 216 |
-
with gr.Column():
|
| 217 |
-
storyboard_to_show = gr.JSON(label="Roteiro Gerado (para visualização)")
|
| 218 |
-
with gr.TabItem("ETAPA 2: O PINTOR (Imagens-Chave)"):
|
| 219 |
-
# ... (UI inalterada)
|
| 220 |
-
with gr.Row():
|
| 221 |
-
with gr.Column(scale=2):
|
| 222 |
-
gr.Markdown("### Controles do Pintor (DreamO)")
|
| 223 |
-
with gr.Row():
|
| 224 |
-
ref_image_1_input = gr.Image(label="Referência 1 (Principal)", type="filepath")
|
| 225 |
-
ref_image_2_input = gr.Image(label="Referência 2 (Opcional, para composição)", type="filepath")
|
| 226 |
-
with gr.Row():
|
| 227 |
-
ref_task_1_input = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa para Referência 1")
|
| 228 |
-
ref_task_2_input = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa para Referência 2")
|
| 229 |
-
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave", variant="primary")
|
| 230 |
-
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=5, interactive=False)
|
| 231 |
-
with gr.Column(scale=1):
|
| 232 |
-
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
|
| 233 |
-
with gr.TabItem("ETAPA 3: A PRODUÇÃO (Gerar Cenas em Vídeo)"):
|
| 234 |
-
# ... (UI inalterada)
|
| 235 |
-
gr.Markdown(f"Gere o vídeo interpolando entre as imagens-chave. A resolução será a mesma da sua imagem de referência. Cada clipe terá **{VIDEO_DURATION_SECONDS} segundos a {VIDEO_FPS} FPS**.")
|
| 236 |
-
with gr.Row():
|
| 237 |
-
with gr.Column():
|
| 238 |
-
keyframes_to_render = gr.Gallery(label="Imagens-Chave para Animar", object_fit="contain", height="auto", interactive=False)
|
| 239 |
-
animator_button = gr.Button("▶️ 3. Produzir Cenas em Vídeo", variant="primary", interactive=False)
|
| 240 |
-
video_production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
|
| 241 |
-
with gr.Column():
|
| 242 |
-
# <<<< REMOVIDO PARA DEPURAÇÃO >>>>
|
| 243 |
-
# fragment_gallery_output = gr.Gallery(label="Cenas Produzidas (Vídeos)", object_fit="contain", height="auto")
|
| 244 |
-
gr.Markdown("A galeria de vídeos foi desativada para depuração. Verifique o resultado na Etapa 4.")
|
| 245 |
-
with gr.Row():
|
| 246 |
-
seed_number = gr.Number(42, label="Seed")
|
| 247 |
-
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
|
| 248 |
-
with gr.TabItem("ETAPA 4: PÓS-PRODUÇÃO"):
|
| 249 |
-
# ... (UI inalterada)
|
| 250 |
-
with gr.Row():
|
| 251 |
-
with gr.Column():
|
| 252 |
-
editor_button = gr.Button("▶️ 4. Concatenar Vídeo Final", variant="primary")
|
| 253 |
-
final_fragments_display = gr.JSON(label="Fragmentos a Concatenar")
|
| 254 |
-
with gr.Column():
|
| 255 |
-
final_video_output = gr.Video(label="A Obra-Prima Final")
|
| 256 |
-
|
| 257 |
-
# --- Ato 5: A Regência (Lógica de Conexão dos Botões) ---
|
| 258 |
-
def director_success(storyboard_list, img_path):
|
| 259 |
-
# ... (lógica inalterada)
|
| 260 |
-
if not storyboard_list: raise gr.Error("O storyboard está vazio ou em formato inválido.")
|
| 261 |
-
return {storyboard_state: storyboard_list, storyboard_to_show: gr.update(value=storyboard_list), ref_image_1_input: gr.update(value=img_path)}
|
| 262 |
-
|
| 263 |
-
director_button.click(
|
| 264 |
-
fn=get_storyboard_from_director,
|
| 265 |
-
inputs=[num_fragments_input, prompt_input, image_input],
|
| 266 |
-
outputs=[storyboard_state]
|
| 267 |
-
).then(
|
| 268 |
-
fn=director_success,
|
| 269 |
-
inputs=[storyboard_state, image_input],
|
| 270 |
-
outputs=[storyboard_state, storyboard_to_show, ref_image_1_input]
|
| 271 |
-
)
|
| 272 |
-
|
| 273 |
-
photographer_button.click(
|
| 274 |
-
fn=run_keyframe_generation,
|
| 275 |
-
inputs=[storyboard_state, ref_image_1_input, ref_image_2_input, ref_task_1_input, ref_task_2_input],
|
| 276 |
-
outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state]
|
| 277 |
-
).then(
|
| 278 |
-
lambda paths: {keyframes_to_render: gr.update(value=paths), animator_button: gr.update(interactive=True)},
|
| 279 |
-
inputs=[keyframe_images_state],
|
| 280 |
-
outputs=[keyframes_to_render, animator_button]
|
| 281 |
-
)
|
| 282 |
-
|
| 283 |
-
# <<<< CHAMADA DE CLICK SIMPLIFICADA PARA DEPURAÇÃO >>>>
|
| 284 |
-
animator_button.click(
|
| 285 |
-
fn=run_full_video_production,
|
| 286 |
-
inputs=[storyboard_state, keyframe_images_state, seed_number, cfg_slider],
|
| 287 |
-
outputs=[video_production_log_output, fragment_list_state]
|
| 288 |
-
).then(
|
| 289 |
-
lambda paths: gr.update(value=paths),
|
| 290 |
-
inputs=[fragment_list_state],
|
| 291 |
-
outputs=[final_fragments_display]
|
| 292 |
-
)
|
| 293 |
-
|
| 294 |
-
editor_button.click(
|
| 295 |
-
fn=concatenate_masterpiece,
|
| 296 |
-
inputs=[fragment_list_state],
|
| 297 |
-
outputs=[final_video_output]
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
if __name__ == "__main__":
|
| 301 |
-
demo.queue().launch(server_name="0.0.0.0", share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|