Spaces:
Sleeping
Sleeping
Upload __init__.py
Browse files- __init__.py +645 -0
__init__.py
ADDED
|
@@ -0,0 +1,645 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--- START OF MODIFIED FILE app.py ---
|
| 2 |
+
# Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
|
| 3 |
+
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
| 4 |
+
#
|
| 5 |
+
# Contato:
|
| 6 |
+
# Carlos Rodrigues dos Santos
|
| 7 | |
| 8 |
+
#
|
| 9 |
+
# Repositórios e Projetos Relacionados:
|
| 10 |
+
# GitHub: https://github.com/carlex22/Aduc-sdr
|
| 11 |
+
# YouTube (Resultados): https://m.youtube.com/channel/UC3EgoJi_Fv7yuDpvfYNtoIQ
|
| 12 |
+
# Hugging Face: https://huggingface.co/spaces/Carlexx/ADUC-Sdr_Gemini_Drem0_Ltx_Video60seconds/
|
| 13 |
+
#
|
| 14 |
+
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
|
| 15 |
+
# sob os termos da Licença Pública Geral Affero da GNU como publicada pela
|
| 16 |
+
# Free Software Foundation, seja a versão 3 da Licença, ou
|
| 17 |
+
# (a seu critério) qualquer versão posterior.
|
| 18 |
+
#
|
| 19 |
+
# Este programa é distribuído na esperança de que seja útil,
|
| 20 |
+
# mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de
|
| 21 |
+
# COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a
|
| 22 |
+
# Licença Pública Geral Affero da GNU para mais detalhes.
|
| 23 |
+
#
|
| 24 |
+
# Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU
|
| 25 |
+
# junto com este programa. Se não, veja <https://www.gnu.org/licenses/>.
|
| 26 |
+
|
| 27 |
+
# --- app.py (ADUC-SDR-3.0: Diretor de Cena com Upscaling Paralelo) ---
|
| 28 |
+
|
| 29 |
+
import gradio as gr
|
| 30 |
+
import torch
|
| 31 |
+
import os
|
| 32 |
+
import re
|
| 33 |
+
import yaml
|
| 34 |
+
from PIL import Image, ImageOps, ExifTags
|
| 35 |
+
import shutil
|
| 36 |
+
import subprocess
|
| 37 |
+
import google.generativeai as genai
|
| 38 |
+
import numpy as np
|
| 39 |
+
import imageio
|
| 40 |
+
from pathlib import Path
|
| 41 |
+
import json
|
| 42 |
+
import time
|
| 43 |
+
import math
|
| 44 |
+
import threading
|
| 45 |
+
|
| 46 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 47 |
+
|
| 48 |
+
from flux_kontext_helpers import flux_kontext_singleton
|
| 49 |
+
from ltx_manager_helpers import ltx_manager_singleton
|
| 50 |
+
from ltx_upscaler_manager_helpers import ltx_upscaler_manager_singleton
|
| 51 |
+
|
| 52 |
+
WORKSPACE_DIR = "aduc_workspace"
|
| 53 |
+
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
|
| 54 |
+
|
| 55 |
+
# ======================================================================================
|
| 56 |
+
# SEÇÃO 1: FUNÇÕES UTILITÁRIAS E DE PROCESSAMENTO DE MÍDIA
|
| 57 |
+
# ======================================================================================
|
| 58 |
+
|
| 59 |
+
def robust_json_parser(raw_text: str) -> dict:
|
| 60 |
+
"""
|
| 61 |
+
Analisa uma string de texto bruto para encontrar e decodificar o primeiro objeto JSON válido.
|
| 62 |
+
É essencial para extrair respostas estruturadas de modelos de linguagem.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
raw_text (str): A string completa retornada pela IA.
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
dict: Um dicionário Python representando o objeto JSON.
|
| 69 |
+
|
| 70 |
+
Raises:
|
| 71 |
+
ValueError: Se nenhum objeto JSON válido for encontrado ou a decodificação falhar.
|
| 72 |
+
"""
|
| 73 |
+
clean_text = raw_text.strip()
|
| 74 |
+
try:
|
| 75 |
+
start_index = clean_text.find('{'); end_index = clean_text.rfind('}')
|
| 76 |
+
if start_index != -1 and end_index != -1 and end_index > start_index:
|
| 77 |
+
json_str = clean_text[start_index : end_index + 1]
|
| 78 |
+
return json.loads(json_str)
|
| 79 |
+
else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.")
|
| 80 |
+
except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}")
|
| 81 |
+
|
| 82 |
+
def process_image_to_square(image_path: str, size: int, output_filename: str = None) -> str:
|
| 83 |
+
"""
|
| 84 |
+
Processa uma imagem para um formato quadrado, redimensionando e cortando centralmente.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
image_path (str): Caminho para a imagem de entrada.
|
| 88 |
+
size (int): A dimensão (altura e largura) da imagem de saída.
|
| 89 |
+
output_filename (str, optional): Nome do arquivo de saída.
|
| 90 |
+
|
| 91 |
+
Returns:
|
| 92 |
+
str: O caminho para a imagem processada.
|
| 93 |
+
"""
|
| 94 |
+
if not image_path: return None
|
| 95 |
+
try:
|
| 96 |
+
img = Image.open(image_path).convert("RGB")
|
| 97 |
+
img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
|
| 98 |
+
if output_filename: output_path = os.path.join(WORKSPACE_DIR, output_filename)
|
| 99 |
+
else: output_path = os.path.join(WORKSPACE_DIR, f"edited_ref_{time.time()}.png")
|
| 100 |
+
img_square.save(output_path)
|
| 101 |
+
return output_path
|
| 102 |
+
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
|
| 103 |
+
|
| 104 |
+
def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str:
|
| 105 |
+
"""
|
| 106 |
+
Usa o FFmpeg para cortar um vídeo, mantendo um número específico de frames do início.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
input_path (str): Caminho para o vídeo de entrada.
|
| 110 |
+
output_path (str): Caminho para salvar o vídeo cortado.
|
| 111 |
+
frames_to_keep (int): Número de frames a serem mantidos.
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
str: O caminho para o vídeo cortado.
|
| 115 |
+
"""
|
| 116 |
+
try:
|
| 117 |
+
subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True)
|
| 118 |
+
return output_path
|
| 119 |
+
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}")
|
| 120 |
+
|
| 121 |
+
def extract_last_n_frames_as_video(input_path: str, output_path: str, n_frames: int) -> str:
|
| 122 |
+
"""
|
| 123 |
+
Usa o FFmpeg para extrair os últimos N frames de um vídeo para criar o "Eco Cinético".
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
input_path (str): Caminho para o vídeo de entrada.
|
| 127 |
+
output_path (str): Caminho para salvar o vídeo de saída (o eco).
|
| 128 |
+
n_frames (int): Número de frames a serem extraídos do final.
|
| 129 |
+
|
| 130 |
+
Returns:
|
| 131 |
+
str: O caminho para o vídeo de eco gerado.
|
| 132 |
+
"""
|
| 133 |
+
try:
|
| 134 |
+
cmd_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=nokey=1:noprint_wrappers=1 \"{input_path}\""
|
| 135 |
+
result = subprocess.run(cmd_probe, shell=True, check=True, text=True, capture_output=True)
|
| 136 |
+
total_frames = int(result.stdout.strip())
|
| 137 |
+
if n_frames >= total_frames: shutil.copyfile(input_path, output_path); return output_path
|
| 138 |
+
start_frame = total_frames - n_frames
|
| 139 |
+
cmd_ffmpeg = f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='gte(n,{start_frame})'\" -vframes {n_frames} -an \"{output_path}\""
|
| 140 |
+
subprocess.run(cmd_ffmpeg, shell=True, check=True, text=True)
|
| 141 |
+
return output_path
|
| 142 |
+
except (subprocess.CalledProcessError, ValueError) as e: raise gr.Error(f"FFmpeg falhou ao extrair os últimos {n_frames} frames: {getattr(e, 'stderr', str(e))}")
|
| 143 |
+
|
| 144 |
+
def concatenate_final_video(fragment_paths: list, fragment_duration_frames: int, eco_video_frames: int, progress=gr.Progress()):
|
| 145 |
+
"""
|
| 146 |
+
Concatena os fragmentos de vídeo gerados em uma única "Obra-Prima" final.
|
| 147 |
+
Fragmentos marcados como 'cut' (identificados pelo nome do arquivo)
|
| 148 |
+
não terão sua duração cortada para preservar a intenção do corte.
|
| 149 |
+
"""
|
| 150 |
+
if not fragment_paths:
|
| 151 |
+
raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
|
| 152 |
+
|
| 153 |
+
progress(0.1, desc="Preparando fragmentos para a montagem final...");
|
| 154 |
+
|
| 155 |
+
try:
|
| 156 |
+
list_file_path = os.path.abspath(os.path.join(WORKSPACE_DIR, f"concat_list_final_{time.time()}.txt"))
|
| 157 |
+
final_output_path = os.path.abspath(os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4"))
|
| 158 |
+
temp_files_for_concat = []
|
| 159 |
+
|
| 160 |
+
duration_for_non_cut_fragments = int(fragment_duration_frames - eco_video_frames)
|
| 161 |
+
duration_for_non_cut_fragments = max(1, duration_for_non_cut_fragments)
|
| 162 |
+
|
| 163 |
+
for i, p in enumerate(fragment_paths):
|
| 164 |
+
is_last_fragment = (i == len(fragment_paths) - 1)
|
| 165 |
+
|
| 166 |
+
if "_cut" in os.path.basename(p) or is_last_fragment:
|
| 167 |
+
temp_files_for_concat.append(os.path.abspath(p))
|
| 168 |
+
else:
|
| 169 |
+
temp_path = os.path.join(WORKSPACE_DIR, f"final_temp_concat_{i}.mp4")
|
| 170 |
+
trim_video_to_frames(p, temp_path, duration_for_non_cut_fragments)
|
| 171 |
+
temp_files_for_concat.append(os.path.abspath(temp_path))
|
| 172 |
+
|
| 173 |
+
progress(0.8, desc="Concatenando clipe final...");
|
| 174 |
+
|
| 175 |
+
with open(list_file_path, "w") as f:
|
| 176 |
+
for p_temp in temp_files_for_concat:
|
| 177 |
+
f.write(f"file '{p_temp}'\n")
|
| 178 |
+
|
| 179 |
+
ffmpeg_command = f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\""
|
| 180 |
+
subprocess.run(ffmpeg_command, shell=True, check=True, text=True)
|
| 181 |
+
|
| 182 |
+
progress(1.0, desc="Montagem final concluída!");
|
| 183 |
+
return final_output_path
|
| 184 |
+
except subprocess.CalledProcessError as e:
|
| 185 |
+
error_output = e.stderr if e.stderr else "Nenhuma saída de erro do FFmpeg."
|
| 186 |
+
raise gr.Error(f"FFmpeg falhou na concatenação final: {error_output}")
|
| 187 |
+
except Exception as e:
|
| 188 |
+
raise gr.Error(f"Um erro ocorreu durante a concatenação final: {e}")
|
| 189 |
+
|
| 190 |
+
def extract_image_exif(image_path: str) -> str:
|
| 191 |
+
"""
|
| 192 |
+
Extrai metadados EXIF relevantes de uma imagem.
|
| 193 |
+
"""
|
| 194 |
+
try:
|
| 195 |
+
img = Image.open(image_path); exif_data = img._getexif()
|
| 196 |
+
if not exif_data: return "No EXIF metadata found."
|
| 197 |
+
exif = { ExifTags.TAGS[k]: v for k, v in exif_data.items() if k in ExifTags.TAGS }
|
| 198 |
+
relevant_tags = ['DateTimeOriginal', 'Model', 'LensModel', 'FNumber', 'ExposureTime', 'ISOSpeedRatings', 'FocalLength']
|
| 199 |
+
metadata_str = ", ".join(f"{key}: {exif[key]}" for key in relevant_tags if key in exif)
|
| 200 |
+
return metadata_str if metadata_str else "No relevant EXIF metadata found."
|
| 201 |
+
except Exception: return "Could not read EXIF data."
|
| 202 |
+
|
| 203 |
+
# ======================================================================================
|
| 204 |
+
# SEÇÃO 2: ORQUESTRADORES DE IA (As "Etapas" da Geração)
|
| 205 |
+
# ======================================================================================
|
| 206 |
+
|
| 207 |
+
def run_storyboard_generation(num_fragments: int, prompt: str, reference_paths: list):
|
| 208 |
+
"""
|
| 209 |
+
Orquestra a Etapa 1: O Roteiro.
|
| 210 |
+
"""
|
| 211 |
+
if not reference_paths: raise gr.Error("Por favor, forneça pelo menos uma imagem de referência.")
|
| 212 |
+
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
| 213 |
+
main_ref_path = reference_paths[0]
|
| 214 |
+
exif_metadata = extract_image_exif(main_ref_path)
|
| 215 |
+
prompt_file = "prompts/unified_storyboard_prompt.txt"
|
| 216 |
+
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
| 217 |
+
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata=exif_metadata)
|
| 218 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
| 219 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
| 220 |
+
model_contents = [director_prompt]
|
| 221 |
+
for i, img_path in enumerate(reference_paths):
|
| 222 |
+
model_contents.append(f"Reference Image {i+1}:")
|
| 223 |
+
model_contents.append(Image.open(img_path))
|
| 224 |
+
print(f"Gerando roteiro com {len(reference_paths)} imagens de referência...")
|
| 225 |
+
response = model.generate_content(model_contents)
|
| 226 |
+
try:
|
| 227 |
+
storyboard_data = robust_json_parser(response.text)
|
| 228 |
+
storyboard = storyboard_data.get("scene_storyboard", [])
|
| 229 |
+
if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}")
|
| 230 |
+
return storyboard
|
| 231 |
+
except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou ao criar o roteiro: {e}. Resposta recebida: {response.text}")
|
| 232 |
+
|
| 233 |
+
def run_keyframe_generation(storyboard, fixed_reference_paths, keyframe_resolution, global_prompt, progress=gr.Progress()):
|
| 234 |
+
"""
|
| 235 |
+
Orquestra a Etapa 2: Os Keyframes.
|
| 236 |
+
"""
|
| 237 |
+
if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.")
|
| 238 |
+
if not fixed_reference_paths: raise gr.Error("A imagem de referência inicial é obrigatória.")
|
| 239 |
+
|
| 240 |
+
initial_ref_image_path = fixed_reference_paths[0]
|
| 241 |
+
log_history = ""; generated_images_for_gallery = []
|
| 242 |
+
width, height = keyframe_resolution, keyframe_resolution
|
| 243 |
+
|
| 244 |
+
keyframe_paths_for_video = []
|
| 245 |
+
scene_history = "N/A"
|
| 246 |
+
|
| 247 |
+
wrapper_prompt_path = os.path.join(os.path.dirname(__file__), "prompts/flux_composition_wrapper_prompt.txt")
|
| 248 |
+
with open(wrapper_prompt_path, "r", encoding="utf-8") as f:
|
| 249 |
+
kontext_template = f.read()
|
| 250 |
+
|
| 251 |
+
director_prompt_path = os.path.join(os.path.dirname(__file__), "prompts/director_composition_prompt.txt")
|
| 252 |
+
with open(director_prompt_path, "r", encoding="utf-8") as f:
|
| 253 |
+
director_template = f.read()
|
| 254 |
+
|
| 255 |
+
try:
|
| 256 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
| 257 |
+
model = genai.GenerativeModel('gemini-1.5-flash')
|
| 258 |
+
|
| 259 |
+
for i, scene_description in enumerate(storyboard):
|
| 260 |
+
progress(i / len(storyboard), desc=f"Compondo Keyframe {i+1}/{len(storyboard)} ({width}x{height})")
|
| 261 |
+
log_history += f"\n--- COMPONDO KEYFRAME {i+1}/{len(storyboard)} ---\n"
|
| 262 |
+
|
| 263 |
+
last_three_paths = ([initial_ref_image_path] + keyframe_paths_for_video)[-3:]
|
| 264 |
+
|
| 265 |
+
log_history += f" - Diretor de Cena está analisando o contexto...\n"
|
| 266 |
+
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery), keyframe_images_state: gr.update(value=generated_images_for_gallery)}
|
| 267 |
+
|
| 268 |
+
director_prompt = director_template.format(
|
| 269 |
+
global_prompt=global_prompt,
|
| 270 |
+
scene_history=scene_history,
|
| 271 |
+
current_scene_desc=scene_description,
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
model_contents = []
|
| 275 |
+
image_map = {}
|
| 276 |
+
current_image_index = 1
|
| 277 |
+
|
| 278 |
+
for path in last_three_paths:
|
| 279 |
+
if path not in image_map.values():
|
| 280 |
+
image_map[current_image_index] = path
|
| 281 |
+
model_contents.extend([f"IMG-{current_image_index}:", Image.open(path)])
|
| 282 |
+
current_image_index += 1
|
| 283 |
+
|
| 284 |
+
for path in fixed_reference_paths:
|
| 285 |
+
if path not in image_map.values():
|
| 286 |
+
image_map[current_image_index] = path
|
| 287 |
+
model_contents.extend([f"IMG-{current_image_index}:", Image.open(path)])
|
| 288 |
+
current_image_index += 1
|
| 289 |
+
|
| 290 |
+
model_contents.append(director_prompt)
|
| 291 |
+
|
| 292 |
+
response_text = model.generate_content(model_contents).text
|
| 293 |
+
composition_prompt_with_tags = response_text.strip()
|
| 294 |
+
|
| 295 |
+
referenced_indices = [int(idx) for idx in re.findall(r'\[IMG-(\d+)\]', composition_prompt_with_tags)]
|
| 296 |
+
|
| 297 |
+
current_reference_paths = [image_map[idx] for idx in sorted(list(set(referenced_indices))) if idx in image_map]
|
| 298 |
+
if not current_reference_paths:
|
| 299 |
+
current_reference_paths = [last_three_paths[-1]]
|
| 300 |
+
|
| 301 |
+
reference_images_pil = [Image.open(p) for p in current_reference_paths]
|
| 302 |
+
final_kontext_prompt = re.sub(r'\[IMG-\d+\]', '', composition_prompt_with_tags).strip()
|
| 303 |
+
|
| 304 |
+
log_history += f" - Diretor de Cena decidiu usar as imagens: {[os.path.basename(p) for p in current_reference_paths]}\n"
|
| 305 |
+
log_history += f" - Prompt Final do Diretor: \"{final_kontext_prompt}\"\n"
|
| 306 |
+
scene_history += f"Scene {i+1}: {final_kontext_prompt}\n"
|
| 307 |
+
|
| 308 |
+
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery), keyframe_images_state: gr.update(value=generated_images_for_gallery)}
|
| 309 |
+
|
| 310 |
+
final_kontext_prompt_wrapped = kontext_template.format(target_prompt=final_kontext_prompt)
|
| 311 |
+
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
|
| 312 |
+
|
| 313 |
+
image = flux_kontext_singleton.generate_image(
|
| 314 |
+
reference_images=reference_images_pil,
|
| 315 |
+
prompt=final_kontext_prompt_wrapped,
|
| 316 |
+
width=width, height=height, seed=int(time.time())
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
image.save(output_path)
|
| 320 |
+
keyframe_paths_for_video.append(output_path)
|
| 321 |
+
generated_images_for_gallery.append(output_path)
|
| 322 |
+
|
| 323 |
+
except Exception as e:
|
| 324 |
+
raise gr.Error(f"O Compositor (FluxKontext) ou o Diretor de Cena (Gemini) falhou: {e}")
|
| 325 |
+
|
| 326 |
+
log_history += "\nComposição de todos os keyframes concluída.\n"
|
| 327 |
+
final_keyframes = keyframe_paths_for_video
|
| 328 |
+
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: final_keyframes, keyframe_images_state: final_keyframes}
|
| 329 |
+
|
| 330 |
+
def get_initial_motion_prompt(user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str):
|
| 331 |
+
"""
|
| 332 |
+
Chama a IA (Gemini) para atuar como "Cineasta Inicial".
|
| 333 |
+
"""
|
| 334 |
+
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
| 335 |
+
try:
|
| 336 |
+
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-1.5-flash'); prompt_file = "prompts/initial_motion_prompt.txt"
|
| 337 |
+
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
| 338 |
+
cinematographer_prompt = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc)
|
| 339 |
+
start_img, dest_img = Image.open(start_image_path), Image.open(destination_image_path)
|
| 340 |
+
model_contents = ["START Image:", start_img, "DESTINATION Image:", dest_img, cinematographer_prompt]
|
| 341 |
+
response = model.generate_content(model_contents)
|
| 342 |
+
return response.text.strip()
|
| 343 |
+
except Exception as e: raise gr.Error(f"O Cineasta de IA (Inicial) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
|
| 344 |
+
|
| 345 |
+
def get_transition_decision(user_prompt, story_history, memory_media_path, path_image_path, destination_image_path, midpoint_scene_description, dest_scene_desc):
|
| 346 |
+
"""
|
| 347 |
+
Chama a IA (Gemini) para atuar como "Diretor de Continuidade".
|
| 348 |
+
"""
|
| 349 |
+
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
| 350 |
+
try:
|
| 351 |
+
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-1.5-flash'); prompt_file = "prompts/transition_decision_prompt.txt"
|
| 352 |
+
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
| 353 |
+
continuity_prompt = template.format(user_prompt=user_prompt, story_history=story_history, midpoint_scene_description=midpoint_scene_description, destination_scene_description=dest_scene_desc)
|
| 354 |
+
with imageio.get_reader(memory_media_path) as reader: mem_img = Image.fromarray(reader.get_data(0))
|
| 355 |
+
path_img, dest_img = Image.open(path_image_path), Image.open(destination_image_path)
|
| 356 |
+
model_contents = ["START Image (from Kinetic Echo):", mem_img, "MIDPOINT Image (Path):", path_img, "DESTINATION Image (Destination):", dest_img, continuity_prompt]
|
| 357 |
+
response = model.generate_content(model_contents)
|
| 358 |
+
decision_data = robust_json_parser(response.text)
|
| 359 |
+
if "transition_type" not in decision_data or "motion_prompt" not in decision_data: raise ValueError("A resposta da IA não contém as chaves 'transition_type' ou 'motion_prompt'.")
|
| 360 |
+
return decision_data
|
| 361 |
+
except Exception as e: raise gr.Error(f"O Diretor de Continuidade (IA) falhou: {e}. Resposta: {getattr(e, 'text', str(e))}")
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def run_video_production(
|
| 366 |
+
video_resolution,
|
| 367 |
+
video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing,
|
| 368 |
+
fragment_duration_frames, mid_cond_strength, dest_cond_strength, num_inference_steps,
|
| 369 |
+
decode_timestep, image_cond_noise_scale,
|
| 370 |
+
prompt_geral, keyframe_images_state, scene_storyboard, cfg,
|
| 371 |
+
progress=gr.Progress()
|
| 372 |
+
):
|
| 373 |
+
"""
|
| 374 |
+
Orquestra a Etapa 3: A Produção e Upscaling Paralelo.
|
| 375 |
+
"""
|
| 376 |
+
try:
|
| 377 |
+
high_res_width, high_res_height = video_resolution, video_resolution
|
| 378 |
+
low_res_scale = 2
|
| 379 |
+
low_res_width = (high_res_width // low_res_scale // 8) * 8
|
| 380 |
+
low_res_height = (high_res_height // low_res_scale // 8) * 8
|
| 381 |
+
|
| 382 |
+
valid_keyframes = [p for p in keyframe_images_state if p is not None and os.path.exists(p)]
|
| 383 |
+
video_total_frames_user = int(video_duration_seconds * video_fps)
|
| 384 |
+
video_total_frames_ltx = int(round((float(video_total_frames_user) - 1.0) / 8.0) * 8 + 1)
|
| 385 |
+
if not valid_keyframes or len(valid_keyframes) < 2: raise gr.Error("São necessários pelo menos 2 keyframes válidos para produzir uma transição.")
|
| 386 |
+
if int(fragment_duration_frames) > video_total_frames_user: raise gr.Error(f"Duração do fragmento ({fragment_duration_frames}) não pode ser maior que a Duração Bruta ({video_total_frames_user}).")
|
| 387 |
+
|
| 388 |
+
log_history = f"\n--- FASE 3/4: Iniciando Produção (Low-Res: {low_res_width}x{low_res_height}, Final: {high_res_width}x{high_res_height})...\n"
|
| 389 |
+
yield {
|
| 390 |
+
production_log_output: log_history, video_gallery_output: [],
|
| 391 |
+
prod_media_start_output: None, prod_media_mid_output: gr.update(visible=False), prod_media_end_output: None
|
| 392 |
+
}
|
| 393 |
+
|
| 394 |
+
seed = int(time.time())
|
| 395 |
+
upscaled_fragments_paths = []
|
| 396 |
+
upscale_threads = []
|
| 397 |
+
story_history = ""
|
| 398 |
+
kinetic_memory_path = None
|
| 399 |
+
num_transitions = len(valid_keyframes) - 1
|
| 400 |
+
|
| 401 |
+
for i in range(num_transitions):
|
| 402 |
+
fragment_num = i + 1
|
| 403 |
+
progress(i / num_transitions, desc=f"Gerando Fragmento Low-Res {fragment_num}...")
|
| 404 |
+
log_history += f"\n--- FRAGMENTO {fragment_num}/{num_transitions} ---\n"
|
| 405 |
+
destination_frame = int(video_total_frames_ltx - 1)
|
| 406 |
+
|
| 407 |
+
if i == 0 or kinetic_memory_path is None:
|
| 408 |
+
start_path, destination_path = valid_keyframes[i], valid_keyframes[i+1]
|
| 409 |
+
dest_scene_desc = scene_storyboard[i]
|
| 410 |
+
log_history += f" - Início (Cena Nova): {os.path.basename(start_path)}\n - Destino: {os.path.basename(destination_path)}\n"
|
| 411 |
+
current_motion_prompt = get_initial_motion_prompt(prompt_geral, start_path, destination_path, dest_scene_desc)
|
| 412 |
+
conditioning_items_data = [(start_path, 0, 1.0), (destination_path, destination_frame, dest_cond_strength)]
|
| 413 |
+
transition_type = "continuous"
|
| 414 |
+
yield { production_log_output: log_history, prod_media_start_output: start_path, prod_media_mid_output: gr.update(visible=False), prod_media_end_output: destination_path }
|
| 415 |
+
else:
|
| 416 |
+
memory_path, path_path, destination_path = kinetic_memory_path, valid_keyframes[i], valid_keyframes[i+1]
|
| 417 |
+
path_scene_desc, dest_scene_desc = scene_storyboard[i-1], scene_storyboard[i]
|
| 418 |
+
log_history += f" - Diretor de Continuidade analisando...\n - Memória: {os.path.basename(memory_path)}\n - Caminho: {os.path.basename(path_path)}\n - Destino: {os.path.basename(destination_path)}\n"
|
| 419 |
+
yield { production_log_output: log_history, prod_media_start_output: gr.update(value=memory_path, visible=True), prod_media_mid_output: gr.update(value=path_path, visible=True), prod_media_end_output: destination_path }
|
| 420 |
+
decision_data = get_transition_decision(prompt_geral, story_history, memory_path, path_path, destination_path, midpoint_scene_description=path_scene_desc, dest_scene_desc=dest_scene_desc)
|
| 421 |
+
transition_type = decision_data["transition_type"]
|
| 422 |
+
current_motion_prompt = decision_data["motion_prompt"]
|
| 423 |
+
log_history += f" - Decisão: {transition_type.upper()}\n"
|
| 424 |
+
mid_cond_frame_calculated = int(video_total_frames_ltx - fragment_duration_frames + eco_video_frames)
|
| 425 |
+
conditioning_items_data = [(memory_path, 0, 1.0), (path_path, mid_cond_frame_calculated, mid_cond_strength), (destination_path, destination_frame, dest_cond_strength)]
|
| 426 |
+
|
| 427 |
+
story_history += f"\n- Ato {fragment_num + 1}: {current_motion_prompt}"
|
| 428 |
+
log_history += f" - Instrução do Cineasta: '{current_motion_prompt}'\n"; yield {production_log_output: log_history}
|
| 429 |
+
|
| 430 |
+
output_filename_low_res = f"fragment_{fragment_num}_lowres_{transition_type}.mp4"
|
| 431 |
+
full_fragment_path_low_res, _ = ltx_manager_singleton.generate_video_fragment(
|
| 432 |
+
motion_prompt=current_motion_prompt, conditioning_items_data=conditioning_items_data,
|
| 433 |
+
width=low_res_width, height=low_res_height, seed=seed, cfg=cfg, progress=progress,
|
| 434 |
+
video_total_frames=video_total_frames_ltx, video_fps=video_fps,
|
| 435 |
+
use_attention_slicing=use_attention_slicing, num_inference_steps=num_inference_steps,
|
| 436 |
+
decode_timestep=decode_timestep, image_cond_noise_scale=image_cond_noise_scale,
|
| 437 |
+
current_fragment_index=fragment_num, output_path=os.path.join(WORKSPACE_DIR, output_filename_low_res)
|
| 438 |
+
)
|
| 439 |
+
log_history += f" - LOG: Gerei {output_filename_low_res}.\n"
|
| 440 |
+
|
| 441 |
+
output_filename_high_res = f"fragment_{fragment_num}_highres_{transition_type}.mp4"
|
| 442 |
+
output_path_high_res = os.path.join(WORKSPACE_DIR, output_filename_high_res)
|
| 443 |
+
|
| 444 |
+
log_history += f" - Disparando upscale para {output_filename_high_res} em paralelo...\n"
|
| 445 |
+
upscale_thread = threading.Thread(
|
| 446 |
+
target=ltx_upscaler_manager_singleton.upscale_video_fragment,
|
| 447 |
+
args=(full_fragment_path_low_res, output_path_high_res, video_fps)
|
| 448 |
+
)
|
| 449 |
+
upscale_thread.start()
|
| 450 |
+
upscale_threads.append((upscale_thread, output_path_high_res))
|
| 451 |
+
|
| 452 |
+
is_last_fragment = (i == num_transitions - 1)
|
| 453 |
+
|
| 454 |
+
if is_last_fragment:
|
| 455 |
+
log_history += " - Último fragmento. Mantendo duração total (low-res).\n"
|
| 456 |
+
kinetic_memory_path = None
|
| 457 |
+
elif transition_type == "cut":
|
| 458 |
+
log_history += " - CORTE DE CENA: Memória reiniciada.\n"
|
| 459 |
+
kinetic_memory_path = None
|
| 460 |
+
else:
|
| 461 |
+
trimmed_fragment_path = os.path.join(WORKSPACE_DIR, f"fragment_{fragment_num}_trimmed_lowres.mp4")
|
| 462 |
+
trim_video_to_frames(full_fragment_path_low_res, trimmed_fragment_path, int(fragment_duration_frames))
|
| 463 |
+
eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.mp4")
|
| 464 |
+
kinetic_memory_path = extract_last_n_frames_as_video(trimmed_fragment_path, eco_output_path, int(eco_video_frames))
|
| 465 |
+
log_history += f" - CONTINUIDADE: Eco criado (low-res): {os.path.basename(kinetic_memory_path)}\n"
|
| 466 |
+
|
| 467 |
+
current_finished_fragments = [path for t, path in upscale_threads if not t.is_alive()]
|
| 468 |
+
yield {production_log_output: log_history, video_gallery_output: current_finished_fragments}
|
| 469 |
+
|
| 470 |
+
progress(0.9, desc="Aguardando finalização dos upscales...")
|
| 471 |
+
log_history += "\nProdução low-res concluída. Aguardando todos os upscales...\n"
|
| 472 |
+
yield {production_log_output: log_history}
|
| 473 |
+
|
| 474 |
+
for thread, path in upscale_threads:
|
| 475 |
+
thread.join()
|
| 476 |
+
upscaled_fragments_paths.append(path)
|
| 477 |
+
|
| 478 |
+
progress(1.0, desc="Produção e upscaling concluídos.")
|
| 479 |
+
log_history += "\nTodos os upscales foram finalizados. Pronto para montar o vídeo final.\n"
|
| 480 |
+
yield {
|
| 481 |
+
production_log_output: log_history,
|
| 482 |
+
video_gallery_output: upscaled_fragments_paths,
|
| 483 |
+
fragment_list_state: upscaled_fragments_paths
|
| 484 |
+
}
|
| 485 |
+
except Exception as e: raise gr.Error(f"A Produção de Vídeo (LTX) falhou: {e}")
|
| 486 |
+
|
| 487 |
+
# ======================================================================================
|
| 488 |
+
# SEÇÃO 3: DEFINIÇÃO DA INTERFACE GRÁFICA (UI com Gradio)
|
| 489 |
+
# ======================================================================================
|
| 490 |
+
|
| 491 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 492 |
+
gr.Markdown(f"# NOVIM-13.1 (Painel de Controle do Diretor)\n*Arquitetura ADUC-SDR com Upscaling Paralelo*")
|
| 493 |
+
|
| 494 |
+
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
|
| 495 |
+
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True)
|
| 496 |
+
|
| 497 |
+
scene_storyboard_state = gr.State([])
|
| 498 |
+
keyframe_images_state = gr.State([])
|
| 499 |
+
fragment_list_state = gr.State([])
|
| 500 |
+
prompt_geral_state = gr.State("")
|
| 501 |
+
processed_ref_paths_state = gr.State([])
|
| 502 |
+
fragment_duration_state = gr.State()
|
| 503 |
+
eco_frames_state = gr.State()
|
| 504 |
+
|
| 505 |
+
gr.Markdown("## CONFIGURAÇÕES GLOBAIS DE RESOLUÇÃO")
|
| 506 |
+
with gr.Row():
|
| 507 |
+
video_resolution_selector = gr.Radio([512, 720, 1024], value=1024, label="Resolução Final do Vídeo (px)")
|
| 508 |
+
keyframe_resolution_selector = gr.Radio([512, 720, 1024], value=512, label="Resolução dos Keyframes (px)")
|
| 509 |
+
|
| 510 |
+
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)")
|
| 511 |
+
with gr.Row():
|
| 512 |
+
with gr.Column(scale=1):
|
| 513 |
+
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
|
| 514 |
+
num_fragments_input = gr.Slider(2, 50, 4, step=1, label="Nº de Keyframes a Gerar")
|
| 515 |
+
reference_gallery = gr.Gallery(
|
| 516 |
+
label="Imagens de Referência (A primeira é a principal)",
|
| 517 |
+
type="filepath",
|
| 518 |
+
columns=4, rows=1, object_fit="contain", height="auto"
|
| 519 |
+
)
|
| 520 |
+
director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary")
|
| 521 |
+
with gr.Column(scale=2): storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado (em Inglês)")
|
| 522 |
+
|
| 523 |
+
gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Compositor & Diretor de Cena)")
|
| 524 |
+
with gr.Row():
|
| 525 |
+
with gr.Column(scale=2):
|
| 526 |
+
gr.Markdown("O Diretor de Cena IA irá analisar as referências e o roteiro para compor cada keyframe de forma autônoma.")
|
| 527 |
+
photographer_button = gr.Button("▶️ 2. Compor Imagens-Chave em Cadeia", variant="primary")
|
| 528 |
+
keyframe_gallery_output = gr.Gallery(label="Galeria de Keyframes Gerados", object_fit="contain", height="auto", type="filepath", interactive=False)
|
| 529 |
+
with gr.Column(scale=1):
|
| 530 |
+
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Compositor", lines=25, interactive=False)
|
| 531 |
+
|
| 532 |
+
gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)")
|
| 533 |
+
with gr.Row():
|
| 534 |
+
with gr.Column(scale=1):
|
| 535 |
+
cfg_slider = gr.Slider(0.5, 10.0, 1.0, step=0.1, label="CFG (Guidance Scale)")
|
| 536 |
+
with gr.Accordion("Controles Avançados de Timing e Performance", open=False):
|
| 537 |
+
video_duration_slider = gr.Slider(label="Duração da Geração Bruta (s)", minimum=2.0, maximum=10.0, value=6.0, step=0.5)
|
| 538 |
+
video_fps_radio = gr.Radio(choices=[8, 16, 24, 32], value=24, label="FPS do Vídeo")
|
| 539 |
+
num_inference_steps_slider = gr.Slider(label="Etapas de Inferência (Low-Res)", minimum=10, maximum=50, value=28, step=1)
|
| 540 |
+
slicing_checkbox = gr.Checkbox(label="Usar Attention Slicing (Economiza VRAM)", value=True)
|
| 541 |
+
gr.Markdown("---"); gr.Markdown("#### Controles de Duração (Arquitetura Eco + Déjà Vu)")
|
| 542 |
+
fragment_duration_slider = gr.Slider(label="Duração de Cada Fragmento (% da Geração Bruta)", minimum=1, maximum=100, value=75, step=1)
|
| 543 |
+
eco_frames_slider = gr.Slider(label="Tamanho do Eco Cinético (Frames)", minimum=4, maximum=48, value=8, step=1)
|
| 544 |
+
mid_cond_strength_slider = gr.Slider(label="Força do 'Caminho'", minimum=0.1, maximum=1.0, value=0.5, step=0.05)
|
| 545 |
+
dest_cond_strength_slider = gr.Slider(label="Força do 'Destino'", minimum=0.1, maximum=1.0, value=1.0, step=0.05)
|
| 546 |
+
gr.Markdown("---"); gr.Markdown("#### Controles do VAE (Avançado)")
|
| 547 |
+
decode_timestep_slider = gr.Slider(label="VAE Decode Timestep", minimum=0.0, maximum=0.2, value=0.05, step=0.005)
|
| 548 |
+
image_cond_noise_scale_slider = gr.Slider(label="VAE Image Cond Noise Scale", minimum=0.0, maximum=0.1, value=0.025, step=0.005)
|
| 549 |
+
|
| 550 |
+
animator_button = gr.Button("▶️ 3. Produzir Cenas", variant="primary")
|
| 551 |
+
with gr.Accordion("Visualização das Mídias de Condicionamento (Ao Vivo)", open=True):
|
| 552 |
+
with gr.Row():
|
| 553 |
+
prod_media_start_output = gr.Video(label="Mídia Inicial (Eco/K1)", interactive=False)
|
| 554 |
+
prod_media_mid_output = gr.Image(label="Mídia do Caminho (K_i-1)", interactive=False, visible=False)
|
| 555 |
+
prod_media_end_output = gr.Image(label="Mídia de Destino (K_i)", interactive=False)
|
| 556 |
+
production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
|
| 557 |
+
with gr.Column(scale=1): video_gallery_output = gr.Gallery(label="Fragmentos Gerados (High-Res)", object_fit="contain", height="auto", type="video")
|
| 558 |
+
|
| 559 |
+
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Montagem Final)")
|
| 560 |
+
with gr.Row():
|
| 561 |
+
with gr.Column():
|
| 562 |
+
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
|
| 563 |
+
final_video_output = gr.Video(label="A Obra-Prima Final")
|
| 564 |
+
|
| 565 |
+
# ... (Markdown de explicação da Arquitetura) ...
|
| 566 |
+
|
| 567 |
+
def process_and_run_storyboard(num_fragments, prompt, gallery_files, keyframe_resolution):
|
| 568 |
+
if not gallery_files:
|
| 569 |
+
raise gr.Error("Por favor, suba pelo menos uma imagem de referência na galeria.")
|
| 570 |
+
|
| 571 |
+
raw_paths = [item['name'] for item in gallery_files]
|
| 572 |
+
processed_paths = []
|
| 573 |
+
for i, path in enumerate(raw_paths):
|
| 574 |
+
filename = f"processed_ref_{i}_{keyframe_resolution}x{keyframe_resolution}.png"
|
| 575 |
+
processed_path = process_image_to_square(path, keyframe_resolution, filename)
|
| 576 |
+
processed_paths.append(processed_path)
|
| 577 |
+
|
| 578 |
+
storyboard = run_storyboard_generation(num_fragments, prompt, processed_paths)
|
| 579 |
+
return storyboard, prompt, processed_paths
|
| 580 |
+
|
| 581 |
+
director_button.click(
|
| 582 |
+
fn=process_and_run_storyboard,
|
| 583 |
+
inputs=[num_fragments_input, prompt_input, reference_gallery, keyframe_resolution_selector],
|
| 584 |
+
outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_paths_state]
|
| 585 |
+
).success(fn=lambda s: s, inputs=[scene_storyboard_state], outputs=[storyboard_to_show])
|
| 586 |
+
|
| 587 |
+
photographer_button.click(
|
| 588 |
+
fn=run_keyframe_generation,
|
| 589 |
+
inputs=[scene_storyboard_state, processed_ref_paths_state, keyframe_resolution_selector, prompt_geral_state],
|
| 590 |
+
outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state]
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
def updated_animator_click(
|
| 594 |
+
video_resolution,
|
| 595 |
+
video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing,
|
| 596 |
+
fragment_duration_percentage, mid_cond_strength, dest_cond_strength, num_inference_steps,
|
| 597 |
+
decode_timestep, image_cond_noise_scale,
|
| 598 |
+
prompt_geral, keyframe_images_state, scene_storyboard, cfg, progress=gr.Progress()):
|
| 599 |
+
|
| 600 |
+
total_frames = video_duration_seconds * video_fps
|
| 601 |
+
fragment_duration_in_frames = int(math.floor((fragment_duration_percentage / 100.0) * total_frames))
|
| 602 |
+
fragment_duration_in_frames = max(1, fragment_duration_in_frames)
|
| 603 |
+
|
| 604 |
+
for update in run_video_production(
|
| 605 |
+
video_resolution,
|
| 606 |
+
video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing,
|
| 607 |
+
fragment_duration_in_frames, mid_cond_strength, dest_cond_strength, num_inference_steps,
|
| 608 |
+
decode_timestep, image_cond_noise_scale,
|
| 609 |
+
prompt_geral, keyframe_images_state, scene_storyboard, cfg, progress):
|
| 610 |
+
yield update
|
| 611 |
+
|
| 612 |
+
yield {
|
| 613 |
+
fragment_duration_state: fragment_duration_in_frames,
|
| 614 |
+
eco_frames_state: eco_video_frames
|
| 615 |
+
}
|
| 616 |
+
|
| 617 |
+
animator_button.click(
|
| 618 |
+
fn=updated_animator_click,
|
| 619 |
+
inputs=[
|
| 620 |
+
video_resolution_selector,
|
| 621 |
+
video_duration_slider, video_fps_radio, eco_frames_slider, slicing_checkbox,
|
| 622 |
+
fragment_duration_slider, mid_cond_strength_slider, dest_cond_strength_slider, num_inference_steps_slider,
|
| 623 |
+
decode_timestep_slider, image_cond_noise_scale_slider,
|
| 624 |
+
prompt_geral_state, keyframe_images_state, scene_storyboard_state, cfg_slider
|
| 625 |
+
],
|
| 626 |
+
outputs=[
|
| 627 |
+
production_log_output, video_gallery_output, fragment_list_state,
|
| 628 |
+
prod_media_start_output, prod_media_mid_output, prod_media_end_output,
|
| 629 |
+
fragment_duration_state, eco_frames_state
|
| 630 |
+
]
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
editor_button.click(
|
| 634 |
+
fn=concatenate_final_video,
|
| 635 |
+
inputs=[fragment_list_state, fragment_duration_state, eco_frames_state],
|
| 636 |
+
outputs=[final_video_output]
|
| 637 |
+
)
|
| 638 |
+
|
| 639 |
+
if __name__ == "__main__":
|
| 640 |
+
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
|
| 641 |
+
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True)
|
| 642 |
+
|
| 643 |
+
demo.queue().launch(server_name="0.0.0.0", share=True)
|
| 644 |
+
--- END OF MODIFIED FILE app.py ---
|
| 645 |
+
```
|