Carlexx commited on
Commit
74e3b3d
·
verified ·
1 Parent(s): 96efd6d

Delete dreamo_helpers.py

Browse files
Files changed (1) hide show
  1. dreamo_helpers.py +0 -123
dreamo_helpers.py DELETED
@@ -1,123 +0,0 @@
1
- # dreamo_helpers.py
2
- # Módulo de serviço para o DreamO, com gestão de memória e aceitando uma lista dinâmica de referências.
3
-
4
- import os
5
- import cv2
6
- import torch
7
- import numpy as np
8
- from PIL import Image
9
- import huggingface_hub
10
- import gc
11
- from facexlib.utils.face_restoration_helper import FaceRestoreHelper
12
- from torchvision.transforms.functional import normalize
13
- from dreamo.dreamo_pipeline import DreamOPipeline
14
- from dreamo.utils import img2tensor, tensor2img
15
- from tools import BEN2
16
-
17
- class Generator:
18
- def __init__(self):
19
- self.cpu_device = torch.device('cpu')
20
- self.gpu_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
21
-
22
- print("Carregando modelos DreamO para a CPU...")
23
- model_root = 'black-forest-labs/FLUX.1-dev'
24
- self.dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
25
- self.dreamo_pipeline.load_dreamo_model(self.cpu_device, use_turbo=True)
26
-
27
- self.bg_rm_model = BEN2.BEN_Base().to(self.cpu_device).eval()
28
- huggingface_hub.hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
29
- self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
30
-
31
- self.face_helper = FaceRestoreHelper(
32
- upscale_factor=1, face_size=512, crop_ratio=(1, 1),
33
- det_model='retinaface_resnet50', save_ext='png', device=self.cpu_device,
34
- )
35
- print("Modelos DreamO prontos (na CPU).")
36
-
37
- def to_gpu(self):
38
- if self.gpu_device.type == 'cpu': return
39
- print("Movendo modelos DreamO para a GPU...")
40
- self.dreamo_pipeline.to(self.gpu_device)
41
- self.bg_rm_model.to(self.gpu_device)
42
- self.face_helper.device = self.gpu_device
43
- self.dreamo_pipeline.t5_embedding.to(self.gpu_device)
44
- self.dreamo_pipeline.task_embedding.to(self.gpu_device)
45
- self.dreamo_pipeline.idx_embedding.to(self.gpu_device)
46
- if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.gpu_device)
47
- if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.gpu_device)
48
- print("Modelos DreamO na GPU.")
49
-
50
- def to_cpu(self):
51
- if self.gpu_device.type == 'cpu': return
52
- print("Descarregando modelos DreamO da GPU...")
53
- self.dreamo_pipeline.to(self.cpu_device)
54
- self.bg_rm_model.to(self.cpu_device)
55
- self.face_helper.device = self.cpu_device
56
- self.dreamo_pipeline.t5_embedding.to(self.cpu_device)
57
- self.dreamo_pipeline.task_embedding.to(self.cpu_device)
58
- self.dreamo_pipeline.idx_embedding.to(self.cpu_device)
59
- if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.cpu_device)
60
- if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.cpu_device)
61
- gc.collect()
62
- if torch.cuda.is_available(): torch.cuda.empty_cache()
63
-
64
- @torch.inference_mode()
65
- # <<<<< MODIFICAÇÃO PRINCIPAL: Aceita uma lista de dicionários de referência >>>>>
66
- def generate_image_with_gpu_management(self, reference_items, prompt, width, height):
67
- ref_conds = []
68
-
69
- for idx, item in enumerate(reference_items):
70
- ref_image_np = item.get('image_np')
71
- ref_task = item.get('task')
72
-
73
- if ref_image_np is not None:
74
- if ref_task == "id":
75
- ref_image = self.get_align_face(ref_image_np)
76
- elif ref_task != "style":
77
- ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np))
78
- else: # Style usa a imagem original
79
- ref_image = ref_image_np
80
-
81
- ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0
82
- ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16)
83
-
84
- # O modelo DreamO espera o índice começando em 1
85
- ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1})
86
-
87
- image = self.dreamo_pipeline(
88
- prompt=prompt,
89
- width=width,
90
- height=height,
91
- num_inference_steps=12,
92
- guidance_scale=4.5,
93
- ref_conds=ref_conds,
94
- generator=torch.Generator(device="cpu").manual_seed(42)
95
- ).images[0]
96
- return image
97
-
98
- @torch.no_grad()
99
- def get_align_face(self, img):
100
- # ... (lógica inalterada)
101
- self.face_helper.clean_all()
102
- image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
103
- self.face_helper.read_image(image_bgr)
104
- self.face_helper.get_face_landmarks_5(only_center_face=True)
105
- self.face_helper.align_warp_face()
106
- if len(self.face_helper.cropped_faces) == 0: return None
107
- align_face = self.face_helper.cropped_faces[0]
108
- input_tensor = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
109
- input_tensor = input_tensor.to(self.gpu_device)
110
- parsing_out = self.face_helper.face_parse(normalize(input_tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
111
- parsing_out = parsing_out.argmax(dim=1, keepdim=True)
112
- bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
113
- bg = sum(parsing_out == i for i in bg_label).bool()
114
- white_image = torch.ones_like(input_tensor)
115
- face_features_image = torch.where(bg, white_image, input_tensor)
116
- return tensor2img(face_features_image, rgb2bgr=False)
117
-
118
- # --- Instância Singleton ---
119
- print("Inicializando o Pintor de Cenas (DreamO Helper)...")
120
- hf_token = os.getenv('HF_TOKEN')
121
- if hf_token: huggingface_hub.login(token=hf_token)
122
- dreamo_generator_singleton = Generator()
123
- print("Pintor de Cenas (DreamO Helper) pronto.")