Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Commit 
							
							Β·
						
						ab5f5f1
	
1
								Parent(s):
							
							988dbd8
								
update
Browse files- app.py +71 -344
- huggy_bench.png β logo.png +0 -0
- pyproject.toml +21 -0
- script.py +0 -14
- src/{assets/css_html_js.py β assets.py} +3 -3
- src/bettertransformer.py +148 -0
- src/control_panel.py +168 -0
- src/flashattentionv2.py +148 -0
- src/latency_score_memory.py +67 -0
- src/leaderboard.py +60 -0
- src/llm_perf.py +127 -0
- src/{assets/text_content.py β text.py} +32 -18
- src/utils.py +21 -28
    	
        app.py
    CHANGED
    
    | @@ -1,371 +1,98 @@ | |
| 1 | 
             
            import os
         | 
| 2 |  | 
| 3 | 
             
            import gradio as gr
         | 
| 4 | 
            -
            import pandas as pd
         | 
| 5 | 
            -
            import plotly.express as px
         | 
| 6 | 
            -
            from huggingface_hub.file_download import hf_hub_download
         | 
| 7 |  | 
| 8 | 
            -
             | 
| 9 | 
            -
            from src. | 
| 10 | 
            -
            from src. | 
| 11 | 
            -
            from src. | 
|  | |
|  | |
|  | |
|  | |
| 12 | 
             
                TITLE,
         | 
| 13 | 
            -
                 | 
| 14 | 
            -
                 | 
| 15 | 
            -
                 | 
|  | |
| 16 | 
             
                CITATION_BUTTON_LABEL,
         | 
| 17 | 
            -
                CITATION_BUTTON_TEXT,
         | 
| 18 | 
             
            )
         | 
| 19 |  | 
| 20 | 
            -
            HF_TOKEN = os.environ.get("HF_TOKEN", None)
         | 
| 21 | 
            -
            LOGO_URL = "https://huggingface.co/spaces/optimum/llm-perf-leaderboard/resolve/main/huggy_bench.png"
         | 
| 22 | 
            -
            LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
         | 
| 23 | 
            -
            ALL_COLUMNS_MAPPING = {
         | 
| 24 | 
            -
                "Model": "Model π€",
         | 
| 25 | 
            -
                "Arch": "Arch ποΈ",
         | 
| 26 | 
            -
                "Size": "Params (B) π",
         | 
| 27 | 
            -
                # deployment settings
         | 
| 28 | 
            -
                "backend.name": "Backend π",
         | 
| 29 | 
            -
                "backend.torch_dtype": "Dtype π₯",
         | 
| 30 | 
            -
                "optimization": "Optimization π οΈ",
         | 
| 31 | 
            -
                "quantization": "Quantization ποΈ",
         | 
| 32 | 
            -
                # measurements
         | 
| 33 | 
            -
                "Score": "Open LLM Score (%) β¬οΈ",
         | 
| 34 | 
            -
                "decode.throughput(tokens/s)": "Decode Throughput (tokens/s) β¬οΈ",
         | 
| 35 | 
            -
                "generate.throughput(tokens/s)": "E2E Throughput (tokens/s) β¬οΈ",
         | 
| 36 | 
            -
                "forward.latency(s)": "Prefill Latency (s) β¬οΈ",
         | 
| 37 | 
            -
                "generate.latency(s)": "E2E Latency (s) β¬οΈ",
         | 
| 38 | 
            -
                "generate.max_memory_allocated(MB)": "Allocated Memory (MB) β¬οΈ",
         | 
| 39 | 
            -
                "generate.max_memory_reserved(MB)": "Reserved Memory (MB) β¬οΈ",
         | 
| 40 | 
            -
                "generate.max_memory_used(MB)": "Used Memory (MB) β¬οΈ",
         | 
| 41 | 
            -
                "generate.energy_consumption(tokens/kWh)": "Energy (tokens/kWh) β¬οΈ",
         | 
| 42 | 
            -
            }
         | 
| 43 | 
            -
            SORTING_COLUMN = ["Score", "generate.throughput(tokens/s)"]
         | 
| 44 | 
            -
            SORTING_ASCENDING = [False, False]
         | 
| 45 | 
            -
            ALL_COLUMNS_DATATYPES = [
         | 
| 46 | 
            -
                # open llm
         | 
| 47 | 
            -
                "markdown",
         | 
| 48 | 
            -
                "markdown",
         | 
| 49 | 
            -
                "number",
         | 
| 50 | 
            -
                # deployment settings
         | 
| 51 | 
            -
                "str",
         | 
| 52 | 
            -
                "str",
         | 
| 53 | 
            -
                "str",
         | 
| 54 | 
            -
                "str",
         | 
| 55 | 
            -
                # measurements
         | 
| 56 | 
            -
                "number",
         | 
| 57 | 
            -
                "number",
         | 
| 58 | 
            -
                "number",
         | 
| 59 | 
            -
                "number",
         | 
| 60 | 
            -
                "number",
         | 
| 61 | 
            -
                "number",
         | 
| 62 | 
            -
                "number",
         | 
| 63 | 
            -
                "number",
         | 
| 64 | 
            -
                "number",
         | 
| 65 | 
            -
                "number",
         | 
| 66 | 
            -
            ]
         | 
| 67 | 
            -
            # download data
         | 
| 68 | 
            -
            hf_hub_download(
         | 
| 69 | 
            -
                repo_id="optimum/llm-perf-dataset",
         | 
| 70 | 
            -
                filename="open-llm.csv",
         | 
| 71 | 
            -
                local_dir="dataset",
         | 
| 72 | 
            -
                repo_type="dataset",
         | 
| 73 | 
            -
                token=HF_TOKEN,
         | 
| 74 | 
            -
            )
         | 
| 75 | 
            -
            OPEN_LLM_DF = pd.read_csv("dataset/open-llm.csv")
         | 
| 76 |  | 
|  | |
| 77 | 
             
            MACHINE_TO_HARDWARE = {"hf-dgx-01": "A100-80GB π₯οΈ"}
         | 
| 78 | 
            -
             | 
| 79 | 
            -
            for machine in MACHINE_TO_HARDWARE:
         | 
| 80 | 
            -
                hf_hub_download(
         | 
| 81 | 
            -
                    repo_id="optimum/llm-perf-dataset",
         | 
| 82 | 
            -
                    filename=f"{machine}/perf-report.csv",
         | 
| 83 | 
            -
                    local_dir="dataset",
         | 
| 84 | 
            -
                    repo_type="dataset",
         | 
| 85 | 
            -
                    token=HF_TOKEN,
         | 
| 86 | 
            -
                )
         | 
| 87 | 
            -
                MACHINE_TO_PERF[machine] = pd.read_csv(f"dataset/{machine}/perf-report.csv")
         | 
| 88 | 
            -
             | 
| 89 | 
            -
             | 
| 90 | 
            -
            def get_benchmark_df(machine="hf-dgx-01"):
         | 
| 91 | 
            -
                # merge on model
         | 
| 92 | 
            -
                machine_perf_df = MACHINE_TO_PERF[machine].copy()
         | 
| 93 | 
            -
                merged_df = OPEN_LLM_DF.merge(machine_perf_df, left_on="Model", right_on="model")
         | 
| 94 | 
            -
                # transpose energy consumption
         | 
| 95 | 
            -
                merged_df["generate.energy_consumption(tokens/kWh)"] = (
         | 
| 96 | 
            -
                    1 / merged_df["generate.energy_consumption(kWh/token)"].fillna(1)
         | 
| 97 | 
            -
                ).astype(int)
         | 
| 98 | 
            -
                # fix nan values
         | 
| 99 | 
            -
                merged_df.loc[
         | 
| 100 | 
            -
                    merged_df["generate.energy_consumption(tokens/kWh)"] == 1,
         | 
| 101 | 
            -
                    "generate.energy_consumption(tokens/kWh)",
         | 
| 102 | 
            -
                ] = pd.NA
         | 
| 103 | 
            -
                # add optimization column
         | 
| 104 | 
            -
                merged_df["optimization"] = merged_df[
         | 
| 105 | 
            -
                    ["backend.to_bettertransformer", "backend.use_flash_attention_2"]
         | 
| 106 | 
            -
                ].apply(
         | 
| 107 | 
            -
                    lambda x: "BetterTransformer"
         | 
| 108 | 
            -
                    if x["backend.to_bettertransformer"]
         | 
| 109 | 
            -
                    else ("FlashAttentionV2" if x["backend.use_flash_attention_2"] else "None"),
         | 
| 110 | 
            -
                    axis=1,
         | 
| 111 | 
            -
                )
         | 
| 112 | 
            -
                # add quantization scheme
         | 
| 113 | 
            -
                merged_df["quantization"] = merged_df[
         | 
| 114 | 
            -
                    ["backend.quantization_scheme", "backend.quantization_config.exllama_config.version"]
         | 
| 115 | 
            -
                ].apply(
         | 
| 116 | 
            -
                    lambda x: "BnB.4bit"
         | 
| 117 | 
            -
                    if x["backend.quantization_scheme"] == "bnb"
         | 
| 118 | 
            -
                    else (
         | 
| 119 | 
            -
                        "GPTQ.4bit+ExllamaV1"
         | 
| 120 | 
            -
                        if (x["backend.quantization_scheme"] == "gptq")
         | 
| 121 | 
            -
                        and (x["backend.quantization_config.exllama_config.version"] == 1)
         | 
| 122 | 
            -
                        else (
         | 
| 123 | 
            -
                            "GPTQ.4bit+ExllamaV2"
         | 
| 124 | 
            -
                            if (x["backend.quantization_scheme"] == "gptq")
         | 
| 125 | 
            -
                            and (x["backend.quantization_config.exllama_config.version"] == 2)
         | 
| 126 | 
            -
                            else "None"
         | 
| 127 | 
            -
                        )
         | 
| 128 | 
            -
                    ),
         | 
| 129 | 
            -
                    axis=1,
         | 
| 130 | 
            -
                )
         | 
| 131 | 
            -
                # add decode throughput
         | 
| 132 | 
            -
                merged_df["decode.throughput(tokens/s)"] = (
         | 
| 133 | 
            -
                    1000 / (merged_df["generate.latency(s)"] - merged_df["forward.latency(s)"])
         | 
| 134 | 
            -
                ).round(2)
         | 
| 135 | 
            -
                # sort by metric
         | 
| 136 | 
            -
                merged_df.sort_values(by=SORTING_COLUMN, ascending=SORTING_ASCENDING, inplace=True)
         | 
| 137 | 
            -
                # filter columns
         | 
| 138 | 
            -
                merged_df = merged_df[list(ALL_COLUMNS_MAPPING.keys())]
         | 
| 139 | 
            -
                # rename columns
         | 
| 140 | 
            -
                merged_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
         | 
| 141 | 
            -
             | 
| 142 | 
            -
                return merged_df
         | 
| 143 | 
            -
             | 
| 144 | 
            -
             | 
| 145 | 
            -
            def get_benchmark_table(bench_df):
         | 
| 146 | 
            -
                copy_df = bench_df.copy()
         | 
| 147 | 
            -
                # transform
         | 
| 148 | 
            -
                copy_df["Model π€"] = copy_df["Model π€"].apply(process_model_name)
         | 
| 149 | 
            -
                copy_df["Arch ποΈ"] = copy_df["Arch ποΈ"].apply(process_model_arch)
         | 
| 150 | 
            -
                # process quantization
         | 
| 151 | 
            -
                copy_df["Open LLM Score (%) β¬οΈ"] = copy_df.apply(
         | 
| 152 | 
            -
                    lambda x: f"{x['Open LLM Score (%) β¬οΈ']}**"
         | 
| 153 | 
            -
                    if x["Quantization ποΈ"] in ["BnB.4bit", "GPTQ.4bit"]
         | 
| 154 | 
            -
                    else x["Open LLM Score (%) β¬οΈ"],
         | 
| 155 | 
            -
                    axis=1,
         | 
| 156 | 
            -
                )
         | 
| 157 | 
            -
                return copy_df
         | 
| 158 | 
            -
             | 
| 159 | 
            -
             | 
| 160 | 
            -
            def get_benchmark_chart(bench_df):
         | 
| 161 | 
            -
                copy_df = bench_df.copy()
         | 
| 162 | 
            -
                # transform
         | 
| 163 | 
            -
                copy_df["Arch ποΈ"] = copy_df["Arch ποΈ"].apply(process_model_arch)
         | 
| 164 | 
            -
                # plot
         | 
| 165 | 
            -
                fig = px.scatter(
         | 
| 166 | 
            -
                    copy_df,
         | 
| 167 | 
            -
                    y="Open LLM Score (%) β¬οΈ",
         | 
| 168 | 
            -
                    x="E2E Latency (s) β¬οΈ",
         | 
| 169 | 
            -
                    size="Allocated Memory (MB) β¬οΈ",
         | 
| 170 | 
            -
                    color="Arch ποΈ",
         | 
| 171 | 
            -
                    custom_data=list(ALL_COLUMNS_MAPPING.values()),
         | 
| 172 | 
            -
                    color_discrete_sequence=px.colors.qualitative.Light24,
         | 
| 173 | 
            -
                )
         | 
| 174 | 
            -
                fig.update_layout(
         | 
| 175 | 
            -
                    title={
         | 
| 176 | 
            -
                        "text": "Latency vs. Score vs. Memory",
         | 
| 177 | 
            -
                        "y": 0.95,
         | 
| 178 | 
            -
                        "x": 0.5,
         | 
| 179 | 
            -
                        "xanchor": "center",
         | 
| 180 | 
            -
                        "yanchor": "top",
         | 
| 181 | 
            -
                    },
         | 
| 182 | 
            -
                    xaxis_title="Per 1000 Tokens Latency (s)",
         | 
| 183 | 
            -
                    yaxis_title="Open LLM Score (%)",
         | 
| 184 | 
            -
                    legend_title="LLM Architecture",
         | 
| 185 | 
            -
                    width=1200,
         | 
| 186 | 
            -
                    height=600,
         | 
| 187 | 
            -
                )
         | 
| 188 | 
            -
                fig.update_traces(
         | 
| 189 | 
            -
                    hovertemplate="<br>".join(
         | 
| 190 | 
            -
                        [
         | 
| 191 | 
            -
                            f"<b>{column}:</b> %{{customdata[{i}]}}"
         | 
| 192 | 
            -
                            for i, column in enumerate(ALL_COLUMNS_MAPPING.values())
         | 
| 193 | 
            -
                        ]
         | 
| 194 | 
            -
                    )
         | 
| 195 | 
            -
                )
         | 
| 196 | 
            -
                return fig
         | 
| 197 | 
            -
             | 
| 198 | 
            -
             | 
| 199 | 
            -
            def filter_query(
         | 
| 200 | 
            -
                text,
         | 
| 201 | 
            -
                backends,
         | 
| 202 | 
            -
                datatypes,
         | 
| 203 | 
            -
                optimizations,
         | 
| 204 | 
            -
                quantizations,
         | 
| 205 | 
            -
                score,
         | 
| 206 | 
            -
                memory,
         | 
| 207 | 
            -
                machine,
         | 
| 208 | 
            -
            ):
         | 
| 209 | 
            -
                raw_df = get_benchmark_df(machine=machine)
         | 
| 210 | 
            -
                filtered_df = raw_df[
         | 
| 211 | 
            -
                    raw_df["Model π€"].str.contains(text, case=False)
         | 
| 212 | 
            -
                    & raw_df["Backend π"].isin(backends)
         | 
| 213 | 
            -
                    & raw_df["Dtype π₯"].isin(datatypes)
         | 
| 214 | 
            -
                    & raw_df["Optimization π οΈ"].isin(optimizations)
         | 
| 215 | 
            -
                    & raw_df["Quantization ποΈ"].isin(quantizations)
         | 
| 216 | 
            -
                    & (raw_df["Open LLM Score (%) β¬οΈ"] >= score)
         | 
| 217 | 
            -
                    & (raw_df["Allocated Memory (MB) β¬οΈ"] <= memory)
         | 
| 218 | 
            -
                ]
         | 
| 219 | 
            -
                filtered_table = get_benchmark_table(filtered_df)
         | 
| 220 | 
            -
                filtered_chart = get_benchmark_chart(filtered_df)
         | 
| 221 | 
            -
                return filtered_table, filtered_chart
         | 
| 222 |  | 
| 223 |  | 
| 224 | 
            -
            # Demo interface
         | 
| 225 | 
             
            demo = gr.Blocks(css=custom_css)
         | 
| 226 | 
             
            with demo:
         | 
| 227 | 
            -
                 | 
| 228 | 
             
                gr.HTML(f'<img src="{LOGO_URL}">', elem_classes="logo")
         | 
| 229 | 
            -
                 | 
| 230 | 
            -
                 | 
| 231 | 
            -
                 | 
| 232 | 
            -
             | 
| 233 | 
            -
             | 
| 234 | 
            -
             | 
| 235 | 
            -
             | 
| 236 | 
            -
             | 
| 237 | 
            -
             | 
| 238 | 
            -
             | 
| 239 | 
            -
             | 
| 240 | 
            -
             | 
| 241 | 
            -
             | 
| 242 | 
            -
             | 
| 243 | 
            -
             | 
| 244 | 
            -
             | 
| 245 | 
            -
             | 
| 246 | 
            -
             | 
|  | |
|  | |
|  | |
| 247 | 
             
                                with gr.TabItem("Leaderboard π
", id=0):
         | 
| 248 | 
            -
                                     | 
| 249 | 
            -
             | 
| 250 | 
            -
             | 
| 251 | 
            -
                                    )
         | 
| 252 | 
            -
             | 
| 253 | 
            -
             | 
| 254 | 
            -
             | 
| 255 | 
            -
             | 
| 256 | 
            -
             | 
| 257 | 
            -
             | 
| 258 | 
            -
             | 
| 259 | 
            -
                                 | 
| 260 | 
            -
             | 
| 261 | 
            -
             | 
| 262 | 
            -
             | 
| 263 | 
            -
             | 
| 264 | 
            -
             | 
| 265 | 
            -
             | 
| 266 | 
            -
             | 
| 267 | 
            -
             | 
| 268 | 
            -
             | 
| 269 | 
            -
             | 
| 270 | 
            -
             | 
| 271 | 
            -
             | 
| 272 | 
            -
             | 
| 273 | 
            -
             | 
| 274 | 
            -
             | 
| 275 | 
            -
             | 
| 276 | 
            -
                        )
         | 
| 277 | 
            -
                        with gr.Row():
         | 
| 278 | 
            -
                            with gr.Column():
         | 
| 279 | 
            -
                                search_bar = gr.Textbox(
         | 
| 280 | 
            -
                                    label="Model π€",
         | 
| 281 | 
            -
                                    info="π Search for a model name",
         | 
| 282 | 
            -
                                    elem_id="search-bar",
         | 
| 283 | 
            -
                                )
         | 
| 284 | 
            -
                        with gr.Row():
         | 
| 285 | 
            -
                            with gr.Column(scale=1):
         | 
| 286 | 
            -
                                score_slider = gr.Slider(
         | 
| 287 | 
            -
                                    label="Open LLM Score (%) π",
         | 
| 288 | 
            -
                                    info="ποΈ Slide to minimum Open LLM score",
         | 
| 289 | 
            -
                                    value=0,
         | 
| 290 | 
            -
                                    elem_id="threshold-slider",
         | 
| 291 | 
            -
                                )
         | 
| 292 | 
            -
                            with gr.Column(scale=1):
         | 
| 293 | 
            -
                                memory_slider = gr.Slider(
         | 
| 294 | 
            -
                                    label="Peak Memory (MB) π",
         | 
| 295 | 
            -
                                    info="ποΈ Slide to maximum Peak Memory",
         | 
| 296 | 
            -
                                    minimum=0,
         | 
| 297 | 
            -
                                    maximum=80 * 1024,
         | 
| 298 | 
            -
                                    value=80 * 1024,
         | 
| 299 | 
            -
                                    elem_id="memory-slider",
         | 
| 300 | 
            -
                                )
         | 
| 301 | 
            -
                            with gr.Column(scale=1):
         | 
| 302 | 
            -
                                backend_checkboxes = gr.CheckboxGroup(
         | 
| 303 | 
            -
                                    label="Backends π",
         | 
| 304 | 
            -
                                    choices=["pytorch", "onnxruntime"],
         | 
| 305 | 
            -
                                    value=["pytorch", "onnxruntime"],
         | 
| 306 | 
            -
                                    info="βοΈ Select the backends",
         | 
| 307 | 
            -
                                    elem_id="backend-checkboxes",
         | 
| 308 | 
            -
                                )
         | 
| 309 | 
            -
                        with gr.Row():
         | 
| 310 | 
            -
                            with gr.Column(scale=1):
         | 
| 311 | 
            -
                                datatype_checkboxes = gr.CheckboxGroup(
         | 
| 312 | 
            -
                                    label="Load Dtypes π₯",
         | 
| 313 | 
            -
                                    choices=["float32", "float16"],
         | 
| 314 | 
            -
                                    value=["float32", "float16"],
         | 
| 315 | 
            -
                                    info="βοΈ Select the load dtypes",
         | 
| 316 | 
            -
                                    elem_id="dtype-checkboxes",
         | 
| 317 | 
            -
                                )
         | 
| 318 | 
            -
                            with gr.Column(scale=1):
         | 
| 319 | 
            -
                                optimization_checkboxes = gr.CheckboxGroup(
         | 
| 320 | 
            -
                                    label="Optimizations π οΈ",
         | 
| 321 | 
            -
                                    choices=["None", "BetterTransformer", "FlashAttentionV2"],
         | 
| 322 | 
            -
                                    value=["None", "BetterTransformer", "FlashAttentionV2"],
         | 
| 323 | 
            -
                                    info="βοΈ Select the optimization",
         | 
| 324 | 
            -
                                    elem_id="optimization-checkboxes",
         | 
| 325 | 
            -
                                )
         | 
| 326 | 
            -
                            with gr.Column(scale=1):
         | 
| 327 | 
            -
                                quantization_checkboxes = gr.CheckboxGroup(
         | 
| 328 | 
            -
                                    label="Quantizations ποΈ",
         | 
| 329 | 
            -
                                    choices=["None", "BnB.4bit", "GPTQ.4bit"],
         | 
| 330 | 
            -
                                    value=["None", "BnB.4bit", "GPTQ.4bit"],
         | 
| 331 | 
            -
                                    info="βοΈ Select the quantization schemes",
         | 
| 332 | 
            -
                                    elem_id="quantization-checkboxes",
         | 
| 333 | 
            -
                                )
         | 
| 334 | 
            -
                        with gr.Row():
         | 
| 335 | 
            -
                            filter_button = gr.Button(
         | 
| 336 | 
            -
                                value="Filter π",
         | 
| 337 | 
            -
                                elem_id="filter-button",
         | 
| 338 | 
            -
                            )
         | 
| 339 | 
            -
                        for machine in MACHINE_TO_HARDWARE:
         | 
| 340 | 
            -
                            filter_button.click(
         | 
| 341 | 
            -
                                filter_query,
         | 
| 342 | 
            -
                                [
         | 
| 343 | 
            -
                                    search_bar,
         | 
| 344 | 
            -
                                    backend_checkboxes,
         | 
| 345 | 
            -
                                    datatype_checkboxes,
         | 
| 346 | 
            -
                                    optimization_checkboxes,
         | 
| 347 | 
            -
                                    quantization_checkboxes,
         | 
| 348 | 
            -
                                    score_slider,
         | 
| 349 | 
            -
                                    memory_slider,
         | 
| 350 | 
            -
                                    machine_placeholders[machine],
         | 
| 351 | 
            -
                                ],
         | 
| 352 | 
            -
                                [machine_tables[machine], machine_plots[machine]],
         | 
| 353 | 
             
                            )
         | 
| 354 | 
            -
             | 
| 355 | 
             
                    ####################### ABOUT TAB #######################
         | 
| 356 | 
             
                    with gr.TabItem("About π", id=3):
         | 
| 357 | 
            -
                        gr.HTML( | 
| 358 | 
            -
                        gr.Markdown( | 
| 359 | 
            -
             | 
| 360 | 
            -
                ####################### CITATION #######################
         | 
| 361 | 
             
                with gr.Row():
         | 
| 362 | 
             
                    with gr.Accordion("π Citation", open=False):
         | 
| 363 | 
             
                        citation_button = gr.Textbox(
         | 
| 364 | 
            -
                            value= | 
| 365 | 
             
                            label=CITATION_BUTTON_LABEL,
         | 
| 366 | 
             
                            elem_id="citation-button",
         | 
| 367 | 
             
                            show_copy_button=True,
         | 
| 368 | 
             
                        )
         | 
| 369 |  | 
| 370 | 
            -
             | 
| 371 | 
            -
            demo | 
|  | 
|  | |
| 1 | 
             
            import os
         | 
| 2 |  | 
| 3 | 
             
            import gradio as gr
         | 
|  | |
|  | |
|  | |
| 4 |  | 
| 5 | 
            +
            from src.control_panel import create_control_panel, create_control_callback
         | 
| 6 | 
            +
            from src.latency_score_memory import create_lat_score_mem_plot
         | 
| 7 | 
            +
            from src.leaderboard import create_leaderboard_table
         | 
| 8 | 
            +
            from src.flashattentionv2 import create_fa2_plots
         | 
| 9 | 
            +
            from src.bettertransformer import create_bt_plots
         | 
| 10 | 
            +
            from src.llm_perf import get_llm_perf_df
         | 
| 11 | 
            +
            from src.assets import custom_css
         | 
| 12 | 
            +
            from src.text import (
         | 
| 13 | 
             
                TITLE,
         | 
| 14 | 
            +
                ABOUT,
         | 
| 15 | 
            +
                INTRODUCTION,
         | 
| 16 | 
            +
                EXAMPLE_CONFIG,
         | 
| 17 | 
            +
                CITATION_BUTTON,
         | 
| 18 | 
             
                CITATION_BUTTON_LABEL,
         | 
|  | |
| 19 | 
             
            )
         | 
| 20 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 21 |  | 
| 22 | 
            +
            LOGO_URL = "https://huggingface.co/spaces/optimum/llm-perf-leaderboard/resolve/main/logo.png"
         | 
| 23 | 
             
            MACHINE_TO_HARDWARE = {"hf-dgx-01": "A100-80GB π₯οΈ"}
         | 
| 24 | 
            +
            HF_TOKEN = os.environ.get("HF_TOKEN", None)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 25 |  | 
| 26 |  | 
|  | |
| 27 | 
             
            demo = gr.Blocks(css=custom_css)
         | 
| 28 | 
             
            with demo:
         | 
| 29 | 
            +
                gr.HTML(TITLE, elem_classes="title")
         | 
| 30 | 
             
                gr.HTML(f'<img src="{LOGO_URL}">', elem_classes="logo")
         | 
| 31 | 
            +
                gr.Markdown(INTRODUCTION, elem_classes="descriptive-text")
         | 
| 32 | 
            +
                ####################### HARDWARE TABS #######################
         | 
| 33 | 
            +
                with gr.Tabs(elem_classes="tabs"):
         | 
| 34 | 
            +
                    for id, (machine, hardware) in enumerate(MACHINE_TO_HARDWARE.items()):
         | 
| 35 | 
            +
                        with gr.TabItem(hardware, id=id):
         | 
| 36 | 
            +
                            ####################### CONTROL PANEL #######################
         | 
| 37 | 
            +
                            (
         | 
| 38 | 
            +
                                filter_button,
         | 
| 39 | 
            +
                                machine_textbox,
         | 
| 40 | 
            +
                                search_bar,
         | 
| 41 | 
            +
                                score_slider,
         | 
| 42 | 
            +
                                memory_slider,
         | 
| 43 | 
            +
                                backend_checkboxes,
         | 
| 44 | 
            +
                                datatype_checkboxes,
         | 
| 45 | 
            +
                                optimization_checkboxes,
         | 
| 46 | 
            +
                                quantization_checkboxes,
         | 
| 47 | 
            +
                            ) = create_control_panel()
         | 
| 48 | 
            +
                            ####################### HARDWARE SUBTABS #######################
         | 
| 49 | 
            +
                            with gr.Tabs(elem_classes="subtabs"):
         | 
| 50 | 
            +
                                llm_perf_df = get_llm_perf_df(machine=machine)
         | 
| 51 | 
            +
                                ####################### LEADERBOARD TAB #######################
         | 
| 52 | 
             
                                with gr.TabItem("Leaderboard π
", id=0):
         | 
| 53 | 
            +
                                    leaderboard_table = create_leaderboard_table(llm_perf_df)
         | 
| 54 | 
            +
                                ####################### LAT. vs. SCORE vs. MEM. TAB #######################
         | 
| 55 | 
            +
                                with gr.TabItem("Latency vs. Score vs. Memory π", id=1):
         | 
| 56 | 
            +
                                    lat_score_mem_plot = create_lat_score_mem_plot(llm_perf_df)
         | 
| 57 | 
            +
                                ####################### BETTERTRANSFORMER SPEEDUP TAB #######################
         | 
| 58 | 
            +
                                with gr.TabItem("BetterTransformer Speedup π", id=2):
         | 
| 59 | 
            +
                                    bt_prefill_plot, bt_decode_plot = create_bt_plots(llm_perf_df)
         | 
| 60 | 
            +
                                with gr.TabItem("FlashAttentionV2 Speedup π", id=3):
         | 
| 61 | 
            +
                                    fa2_prefill_plot, fa2_decode_plot = create_fa2_plots(llm_perf_df)
         | 
| 62 | 
            +
                            ####################### CONTROL CALLBACK #######################
         | 
| 63 | 
            +
                            create_control_callback(
         | 
| 64 | 
            +
                                filter_button,
         | 
| 65 | 
            +
                                # inputs
         | 
| 66 | 
            +
                                machine_textbox,
         | 
| 67 | 
            +
                                search_bar,
         | 
| 68 | 
            +
                                score_slider,
         | 
| 69 | 
            +
                                memory_slider,
         | 
| 70 | 
            +
                                backend_checkboxes,
         | 
| 71 | 
            +
                                datatype_checkboxes,
         | 
| 72 | 
            +
                                optimization_checkboxes,
         | 
| 73 | 
            +
                                quantization_checkboxes,
         | 
| 74 | 
            +
                                # outputs
         | 
| 75 | 
            +
                                leaderboard_table,
         | 
| 76 | 
            +
                                lat_score_mem_plot,
         | 
| 77 | 
            +
                                bt_prefill_plot,
         | 
| 78 | 
            +
                                bt_decode_plot,
         | 
| 79 | 
            +
                                fa2_prefill_plot,
         | 
| 80 | 
            +
                                fa2_decode_plot,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 81 | 
             
                            )
         | 
|  | |
| 82 | 
             
                    ####################### ABOUT TAB #######################
         | 
| 83 | 
             
                    with gr.TabItem("About π", id=3):
         | 
| 84 | 
            +
                        gr.HTML(ABOUT, elem_classes="descriptive-text")
         | 
| 85 | 
            +
                        gr.Markdown(EXAMPLE_CONFIG, elem_classes="descriptive-text")
         | 
| 86 | 
            +
                ####################### CITATION
         | 
|  | |
| 87 | 
             
                with gr.Row():
         | 
| 88 | 
             
                    with gr.Accordion("π Citation", open=False):
         | 
| 89 | 
             
                        citation_button = gr.Textbox(
         | 
| 90 | 
            +
                            value=CITATION_BUTTON,
         | 
| 91 | 
             
                            label=CITATION_BUTTON_LABEL,
         | 
| 92 | 
             
                            elem_id="citation-button",
         | 
| 93 | 
             
                            show_copy_button=True,
         | 
| 94 | 
             
                        )
         | 
| 95 |  | 
| 96 | 
            +
            if __name__ == "__main__":
         | 
| 97 | 
            +
                # Launch demo
         | 
| 98 | 
            +
                demo.queue().launch()
         | 
    	
        huggy_bench.png β logo.png
    RENAMED
    
    | 
											File without changes
										 | 
    	
        pyproject.toml
    ADDED
    
    | @@ -0,0 +1,21 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #  Copyright 2021 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            #  Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            #  you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            #  You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #      http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            #  Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            #  distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            #  See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            #  limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            [tool.black]
         | 
| 16 | 
            +
            line-length = 119
         | 
| 17 | 
            +
            target-version = ['py37']
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            [tool.ruff]
         | 
| 20 | 
            +
            ignore = ["E501", "C901"]
         | 
| 21 | 
            +
            select = ["C", "E", "F", "I", "W"]
         | 
    	
        script.py
    DELETED
    
    | @@ -1,14 +0,0 @@ | |
| 1 | 
            -
            from huggingface_hub import hf_hub_download
         | 
| 2 | 
            -
            import pandas as pd
         | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
| 5 | 
            -
            hf_hub_download(
         | 
| 6 | 
            -
                repo_id="optimum/llm-perf-dataset",
         | 
| 7 | 
            -
                filename="open-llm.csv",
         | 
| 8 | 
            -
                local_dir="dataset",
         | 
| 9 | 
            -
                repo_type="dataset",
         | 
| 10 | 
            -
            )
         | 
| 11 | 
            -
             | 
| 12 | 
            -
            open_llm = pd.read_csv("dataset/open-llm.csv")
         | 
| 13 | 
            -
            print(open_llm["Arch"].unique())
         | 
| 14 | 
            -
            print(open_llm[open_llm["Arch"] == "rwkv"]["Model"].unique())
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        src/{assets/css_html_js.py β assets.py}
    RENAMED
    
    | @@ -6,14 +6,14 @@ custom_css = """ | |
| 6 | 
             
                max-width: 100%
         | 
| 7 | 
             
                object-fit: contain;
         | 
| 8 | 
             
            }
         | 
| 9 | 
            -
            . | 
| 10 | 
             
                font-size: 16px !important;
         | 
| 11 | 
             
            }
         | 
| 12 |  | 
| 13 | 
            -
            . | 
| 14 | 
             
                font-size: 20px;
         | 
| 15 | 
             
            }
         | 
| 16 | 
            -
            . | 
| 17 | 
             
                font-size: 20px;
         | 
| 18 | 
             
            }
         | 
| 19 |  | 
|  | |
| 6 | 
             
                max-width: 100%
         | 
| 7 | 
             
                object-fit: contain;
         | 
| 8 | 
             
            }
         | 
| 9 | 
            +
            .text {
         | 
| 10 | 
             
                font-size: 16px !important;
         | 
| 11 | 
             
            }
         | 
| 12 |  | 
| 13 | 
            +
            .tabs button {
         | 
| 14 | 
             
                font-size: 20px;
         | 
| 15 | 
             
            }
         | 
| 16 | 
            +
            .subtabs button {
         | 
| 17 | 
             
                font-size: 20px;
         | 
| 18 | 
             
            }
         | 
| 19 |  | 
    	
        src/bettertransformer.py
    ADDED
    
    | @@ -0,0 +1,148 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import pandas as pd
         | 
| 3 | 
            +
            import plotly.express as px
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            from src.utils import process_arch
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            BETTERTRANSFORMER_DATA = [
         | 
| 10 | 
            +
                # open llm
         | 
| 11 | 
            +
                "Model π€",
         | 
| 12 | 
            +
                "Arch ποΈ",
         | 
| 13 | 
            +
                "DType π₯",
         | 
| 14 | 
            +
                "Backend π",
         | 
| 15 | 
            +
                "Params (B)",
         | 
| 16 | 
            +
                "Open LLM Score (%)",
         | 
| 17 | 
            +
                # deployment settings
         | 
| 18 | 
            +
                "DType π₯",
         | 
| 19 | 
            +
                "Backend π",
         | 
| 20 | 
            +
                "Quantization ποΈ",
         | 
| 21 | 
            +
                # primary measurements
         | 
| 22 | 
            +
                "Prefill Latency (s)",
         | 
| 23 | 
            +
                "Prefill Latency (s) BetterTransformer",
         | 
| 24 | 
            +
                "Decode Throughput (tokens/s)",
         | 
| 25 | 
            +
                "Decode Throughput (tokens/s) BetterTransformer",
         | 
| 26 | 
            +
                "E2E Throughput (tokens/s)",
         | 
| 27 | 
            +
                "E2E Throughput (tokens/s) BetterTransformer",
         | 
| 28 | 
            +
                # speedups
         | 
| 29 | 
            +
                "Prefill Latency Speedup (%)",
         | 
| 30 | 
            +
                "Decode Throughput Speedup (%)",
         | 
| 31 | 
            +
            ]
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            def get_bt_df(llm_perf_df):
         | 
| 35 | 
            +
                bt_df = llm_perf_df.copy()
         | 
| 36 | 
            +
                # process
         | 
| 37 | 
            +
                bt_df["Arch ποΈ"] = bt_df["Arch ποΈ"].apply(process_arch)
         | 
| 38 | 
            +
                # seperate original model experiments from BetterTransformer experiments
         | 
| 39 | 
            +
                original_df = bt_df[bt_df["Optimization π οΈ"] == "None"]
         | 
| 40 | 
            +
                bt_df = bt_df[bt_df["Optimization π οΈ"] == "BetterTransformer"]
         | 
| 41 | 
            +
                # merge the two dataframes
         | 
| 42 | 
            +
                bt_df = pd.merge(
         | 
| 43 | 
            +
                    original_df,
         | 
| 44 | 
            +
                    bt_df,
         | 
| 45 | 
            +
                    on=["Model π€", "Quantization ποΈ"],
         | 
| 46 | 
            +
                    suffixes=["", " BetterTransformer"],
         | 
| 47 | 
            +
                )
         | 
| 48 | 
            +
                # compute speedups
         | 
| 49 | 
            +
                bt_df["Prefill Latency Speedup (%)"] = (
         | 
| 50 | 
            +
                    (bt_df["Prefill Latency (s)"] / bt_df["Prefill Latency (s) BetterTransformer"]) * 100
         | 
| 51 | 
            +
                ).round(2)
         | 
| 52 | 
            +
                bt_df["Decode Throughput Speedup (%)"] = (
         | 
| 53 | 
            +
                    (bt_df["Decode Throughput (tokens/s) BetterTransformer"] / bt_df["Decode Throughput (tokens/s)"]) * 100
         | 
| 54 | 
            +
                ).round(2)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                # filter speedups > 1000%
         | 
| 57 | 
            +
                bt_df = bt_df[bt_df["Prefill Latency Speedup (%)"] < 1000]
         | 
| 58 | 
            +
                bt_df = bt_df[bt_df["Decode Throughput Speedup (%)"] < 1000]
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                return bt_df
         | 
| 61 | 
            +
             | 
| 62 | 
            +
             | 
| 63 | 
            +
            def get_bt_decode_fig(llm_perf_df):
         | 
| 64 | 
            +
                bt_df = get_bt_df(llm_perf_df)
         | 
| 65 | 
            +
                # plot
         | 
| 66 | 
            +
                decode_fig = px.box(
         | 
| 67 | 
            +
                    bt_df,
         | 
| 68 | 
            +
                    x="Arch ποΈ",
         | 
| 69 | 
            +
                    y="Decode Throughput Speedup (%)",
         | 
| 70 | 
            +
                    color_discrete_sequence=px.colors.qualitative.Light24,
         | 
| 71 | 
            +
                    custom_data=BETTERTRANSFORMER_DATA,
         | 
| 72 | 
            +
                    color="Quantization ποΈ",
         | 
| 73 | 
            +
                    points="all",
         | 
| 74 | 
            +
                )
         | 
| 75 | 
            +
                # add hover data
         | 
| 76 | 
            +
                decode_fig.update_traces(
         | 
| 77 | 
            +
                    hovertemplate="<br>".join(
         | 
| 78 | 
            +
                        [f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(BETTERTRANSFORMER_DATA)]
         | 
| 79 | 
            +
                    )
         | 
| 80 | 
            +
                )
         | 
| 81 | 
            +
                # add layout
         | 
| 82 | 
            +
                decode_fig.update_layout(
         | 
| 83 | 
            +
                    title={
         | 
| 84 | 
            +
                        "text": "Decode Throughput Speedup per Architecture",
         | 
| 85 | 
            +
                        "y": 0.95,
         | 
| 86 | 
            +
                        "x": 0.5,
         | 
| 87 | 
            +
                        "xanchor": "center",
         | 
| 88 | 
            +
                        "yanchor": "top",
         | 
| 89 | 
            +
                    },
         | 
| 90 | 
            +
                    xaxis_title="LLM Architecture",
         | 
| 91 | 
            +
                    yaxis_title="Decode Speedup (%)",
         | 
| 92 | 
            +
                    legend_title="Quantization Scheme",
         | 
| 93 | 
            +
                    width=1200,
         | 
| 94 | 
            +
                    height=600,
         | 
| 95 | 
            +
                )
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                return decode_fig
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            def get_bt_prefill_fig(llm_perf_df):
         | 
| 101 | 
            +
                bt_df = get_bt_df(llm_perf_df)
         | 
| 102 | 
            +
                # plot
         | 
| 103 | 
            +
                prefill_fig = px.box(
         | 
| 104 | 
            +
                    bt_df,
         | 
| 105 | 
            +
                    x="Arch ποΈ",
         | 
| 106 | 
            +
                    y="Prefill Latency Speedup (%)",
         | 
| 107 | 
            +
                    color_discrete_sequence=px.colors.qualitative.Light24,
         | 
| 108 | 
            +
                    custom_data=BETTERTRANSFORMER_DATA,
         | 
| 109 | 
            +
                    color="Quantization ποΈ",
         | 
| 110 | 
            +
                    points="all",
         | 
| 111 | 
            +
                )
         | 
| 112 | 
            +
                # add hover data
         | 
| 113 | 
            +
                prefill_fig.update_traces(
         | 
| 114 | 
            +
                    hovertemplate="<br>".join(
         | 
| 115 | 
            +
                        [f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(BETTERTRANSFORMER_DATA)]
         | 
| 116 | 
            +
                    )
         | 
| 117 | 
            +
                )
         | 
| 118 | 
            +
                # add layout
         | 
| 119 | 
            +
                prefill_fig.update_layout(
         | 
| 120 | 
            +
                    title={
         | 
| 121 | 
            +
                        "text": "Prefill Latency Speedup per Architecture",
         | 
| 122 | 
            +
                        "y": 0.95,
         | 
| 123 | 
            +
                        "x": 0.5,
         | 
| 124 | 
            +
                        "xanchor": "center",
         | 
| 125 | 
            +
                        "yanchor": "top",
         | 
| 126 | 
            +
                    },
         | 
| 127 | 
            +
                    xaxis_title="LLM Architecture",
         | 
| 128 | 
            +
                    yaxis_title="Prefill Speedup (%)",
         | 
| 129 | 
            +
                    legend_title="Quantization Scheme",
         | 
| 130 | 
            +
                    width=1200,
         | 
| 131 | 
            +
                    height=600,
         | 
| 132 | 
            +
                )
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                return prefill_fig
         | 
| 135 | 
            +
             | 
| 136 | 
            +
             | 
| 137 | 
            +
            def create_bt_plots(llm_perf_df):
         | 
| 138 | 
            +
                # descriptive text
         | 
| 139 | 
            +
                gr.HTML("π Hover over the points π for additional information.", elem_id="text")
         | 
| 140 | 
            +
                # get figures
         | 
| 141 | 
            +
                prefill_fig = get_bt_prefill_fig(llm_perf_df)
         | 
| 142 | 
            +
                decode_fig = get_bt_decode_fig(llm_perf_df)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                # create plots
         | 
| 145 | 
            +
                prefill_plot = gr.components.Plot(value=prefill_fig, elem_id="plot", show_label=False)
         | 
| 146 | 
            +
                decode_plot = gr.components.Plot(value=decode_fig, elem_id="plot", show_label=False)
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                return prefill_plot, decode_plot
         | 
    	
        src/control_panel.py
    ADDED
    
    | @@ -0,0 +1,168 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from src.llm_perf import get_llm_perf_df
         | 
| 4 | 
            +
            from src.leaderboard import get_leaderboard_df
         | 
| 5 | 
            +
            from src.latency_score_memory import get_lat_score_mem_fig
         | 
| 6 | 
            +
            from src.bettertransformer import get_bt_prefill_fig, get_bt_decode_fig
         | 
| 7 | 
            +
            from src.flashattentionv2 import get_fa2_prefill_fig, get_fa2_decode_fig
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            def create_control_panel(machine: str = "hf-dgx-01"):
         | 
| 11 | 
            +
                # descriptive text
         | 
| 12 | 
            +
                gr.HTML("Use this control panel to filter this leaderboard.", elem_id="text")
         | 
| 13 | 
            +
                # controls
         | 
| 14 | 
            +
                machine_textbox = gr.Textbox(value=machine, visible=False)
         | 
| 15 | 
            +
                with gr.Row():
         | 
| 16 | 
            +
                    with gr.Column():
         | 
| 17 | 
            +
                        search_bar = gr.Textbox(
         | 
| 18 | 
            +
                            label="Model π€",
         | 
| 19 | 
            +
                            info="π Search for a model name",
         | 
| 20 | 
            +
                            elem_id="search-bar",
         | 
| 21 | 
            +
                        )
         | 
| 22 | 
            +
                with gr.Row():
         | 
| 23 | 
            +
                    with gr.Column(scale=1):
         | 
| 24 | 
            +
                        score_slider = gr.Slider(
         | 
| 25 | 
            +
                            label="Open LLM Score (%) π",
         | 
| 26 | 
            +
                            info="ποΈ Slide to minimum Open LLM score",
         | 
| 27 | 
            +
                            value=0,
         | 
| 28 | 
            +
                            elem_id="threshold-slider",
         | 
| 29 | 
            +
                        )
         | 
| 30 | 
            +
                    with gr.Column(scale=1):
         | 
| 31 | 
            +
                        memory_slider = gr.Slider(
         | 
| 32 | 
            +
                            label="Peak Memory (MB) π",
         | 
| 33 | 
            +
                            info="ποΈ Slide to maximum Peak Memory",
         | 
| 34 | 
            +
                            minimum=0,
         | 
| 35 | 
            +
                            maximum=80 * 1024,
         | 
| 36 | 
            +
                            value=80 * 1024,
         | 
| 37 | 
            +
                            elem_id="memory-slider",
         | 
| 38 | 
            +
                        )
         | 
| 39 | 
            +
                    with gr.Column(scale=1):
         | 
| 40 | 
            +
                        backend_checkboxes = gr.CheckboxGroup(
         | 
| 41 | 
            +
                            label="Backends π",
         | 
| 42 | 
            +
                            choices=["pytorch", "onnxruntime"],
         | 
| 43 | 
            +
                            value=["pytorch", "onnxruntime"],
         | 
| 44 | 
            +
                            info="βοΈ Select the backends",
         | 
| 45 | 
            +
                            elem_id="backend-checkboxes",
         | 
| 46 | 
            +
                        )
         | 
| 47 | 
            +
                with gr.Row():
         | 
| 48 | 
            +
                    with gr.Column(scale=1):
         | 
| 49 | 
            +
                        datatype_checkboxes = gr.CheckboxGroup(
         | 
| 50 | 
            +
                            label="DTypes π₯",
         | 
| 51 | 
            +
                            choices=["float32", "float16"],
         | 
| 52 | 
            +
                            value=["float32", "float16"],
         | 
| 53 | 
            +
                            info="βοΈ Select the load data types",
         | 
| 54 | 
            +
                            elem_id="dtype-checkboxes",
         | 
| 55 | 
            +
                        )
         | 
| 56 | 
            +
                    with gr.Column(scale=1):
         | 
| 57 | 
            +
                        optimization_checkboxes = gr.CheckboxGroup(
         | 
| 58 | 
            +
                            label="Optimizations π οΈ",
         | 
| 59 | 
            +
                            choices=["None", "BetterTransformer", "FlashAttentionV2"],
         | 
| 60 | 
            +
                            value=["None", "BetterTransformer", "FlashAttentionV2"],
         | 
| 61 | 
            +
                            info="βοΈ Select the optimization",
         | 
| 62 | 
            +
                            elem_id="optimization-checkboxes",
         | 
| 63 | 
            +
                        )
         | 
| 64 | 
            +
                    with gr.Column(scale=1):
         | 
| 65 | 
            +
                        quantization_checkboxes = gr.CheckboxGroup(
         | 
| 66 | 
            +
                            label="Quantizations ποΈ",
         | 
| 67 | 
            +
                            choices=["None", "BnB.4bit", "GPTQ.4bit+ExllamaV1", "GPTQ.4bit+ExllamaV2"],
         | 
| 68 | 
            +
                            value=["None", "BnB.4bit", "GPTQ.4bit", "GPTQ.4bit+ExllamaV1", "GPTQ.4bit+ExllamaV2"],
         | 
| 69 | 
            +
                            info="βοΈ Select the quantization schemes",
         | 
| 70 | 
            +
                            elem_id="quantization-checkboxes",
         | 
| 71 | 
            +
                        )
         | 
| 72 | 
            +
                with gr.Row():
         | 
| 73 | 
            +
                    filter_button = gr.Button(
         | 
| 74 | 
            +
                        value="Filter π",
         | 
| 75 | 
            +
                        elem_id="filter-button",
         | 
| 76 | 
            +
                    )
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                return (
         | 
| 79 | 
            +
                    filter_button,
         | 
| 80 | 
            +
                    machine_textbox,
         | 
| 81 | 
            +
                    search_bar,
         | 
| 82 | 
            +
                    score_slider,
         | 
| 83 | 
            +
                    memory_slider,
         | 
| 84 | 
            +
                    backend_checkboxes,
         | 
| 85 | 
            +
                    datatype_checkboxes,
         | 
| 86 | 
            +
                    optimization_checkboxes,
         | 
| 87 | 
            +
                    quantization_checkboxes,
         | 
| 88 | 
            +
                )
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            def filter_fn(
         | 
| 92 | 
            +
                machine,
         | 
| 93 | 
            +
                model,
         | 
| 94 | 
            +
                backends,
         | 
| 95 | 
            +
                datatypes,
         | 
| 96 | 
            +
                optimizations,
         | 
| 97 | 
            +
                quantizations,
         | 
| 98 | 
            +
                score,
         | 
| 99 | 
            +
                memory,
         | 
| 100 | 
            +
            ):
         | 
| 101 | 
            +
                raw_df = get_llm_perf_df(machine=machine)
         | 
| 102 | 
            +
                filtered_df = raw_df[
         | 
| 103 | 
            +
                    raw_df["Model π€"].str.contains(model, case=False)
         | 
| 104 | 
            +
                    & raw_df["Backend π"].isin(backends)
         | 
| 105 | 
            +
                    & raw_df["DType π₯"].isin(datatypes)
         | 
| 106 | 
            +
                    & raw_df["Optimization π οΈ"].isin(optimizations)
         | 
| 107 | 
            +
                    & raw_df["Quantization ποΈ"].isin(quantizations)
         | 
| 108 | 
            +
                    & (raw_df["Open LLM Score (%)"] >= score)
         | 
| 109 | 
            +
                    & (raw_df["Allocated Memory (MB)"] <= memory)
         | 
| 110 | 
            +
                ]
         | 
| 111 | 
            +
                filtered_leaderboard_df = get_leaderboard_df(filtered_df)
         | 
| 112 | 
            +
                filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_df)
         | 
| 113 | 
            +
                filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
         | 
| 114 | 
            +
                filtered_bt_decode_fig = get_bt_decode_fig(filtered_df)
         | 
| 115 | 
            +
                filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df)
         | 
| 116 | 
            +
                filtered_fa2_decode_fig = get_fa2_decode_fig(filtered_df)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                return [
         | 
| 119 | 
            +
                    filtered_leaderboard_df,
         | 
| 120 | 
            +
                    filtered_lat_score_mem_fig,
         | 
| 121 | 
            +
                    filtered_bt_prefill_fig,
         | 
| 122 | 
            +
                    filtered_bt_decode_fig,
         | 
| 123 | 
            +
                    filtered_fa2_prefill_fig,
         | 
| 124 | 
            +
                    filtered_fa2_decode_fig,
         | 
| 125 | 
            +
                ]
         | 
| 126 | 
            +
             | 
| 127 | 
            +
             | 
| 128 | 
            +
            def create_control_callback(
         | 
| 129 | 
            +
                # button
         | 
| 130 | 
            +
                filter_button,
         | 
| 131 | 
            +
                # inputs
         | 
| 132 | 
            +
                machine_textbox,
         | 
| 133 | 
            +
                search_bar,
         | 
| 134 | 
            +
                score_slider,
         | 
| 135 | 
            +
                memory_slider,
         | 
| 136 | 
            +
                backend_checkboxes,
         | 
| 137 | 
            +
                datatype_checkboxes,
         | 
| 138 | 
            +
                optimization_checkboxes,
         | 
| 139 | 
            +
                quantization_checkboxes,
         | 
| 140 | 
            +
                # outputs
         | 
| 141 | 
            +
                leaderboard_table,
         | 
| 142 | 
            +
                lat_score_mem_plot,
         | 
| 143 | 
            +
                bt_prefill_plot,
         | 
| 144 | 
            +
                bt_decode_plot,
         | 
| 145 | 
            +
                fa2_prefill_plot,
         | 
| 146 | 
            +
                fa2_decode_plot,
         | 
| 147 | 
            +
            ):
         | 
| 148 | 
            +
                filter_button.click(
         | 
| 149 | 
            +
                    fn=filter_fn,
         | 
| 150 | 
            +
                    inputs=[
         | 
| 151 | 
            +
                        machine_textbox,
         | 
| 152 | 
            +
                        search_bar,
         | 
| 153 | 
            +
                        backend_checkboxes,
         | 
| 154 | 
            +
                        datatype_checkboxes,
         | 
| 155 | 
            +
                        optimization_checkboxes,
         | 
| 156 | 
            +
                        quantization_checkboxes,
         | 
| 157 | 
            +
                        score_slider,
         | 
| 158 | 
            +
                        memory_slider,
         | 
| 159 | 
            +
                    ],
         | 
| 160 | 
            +
                    outputs=[
         | 
| 161 | 
            +
                        leaderboard_table,
         | 
| 162 | 
            +
                        lat_score_mem_plot,
         | 
| 163 | 
            +
                        bt_prefill_plot,
         | 
| 164 | 
            +
                        bt_decode_plot,
         | 
| 165 | 
            +
                        fa2_prefill_plot,
         | 
| 166 | 
            +
                        fa2_decode_plot,
         | 
| 167 | 
            +
                    ],
         | 
| 168 | 
            +
                )
         | 
    	
        src/flashattentionv2.py
    ADDED
    
    | @@ -0,0 +1,148 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import pandas as pd
         | 
| 3 | 
            +
            import plotly.express as px
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            from src.utils import process_arch
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            FLASHATTENTIONV2_DATA = [
         | 
| 10 | 
            +
                # open llm
         | 
| 11 | 
            +
                "Model π€",
         | 
| 12 | 
            +
                "Arch ποΈ",
         | 
| 13 | 
            +
                "DType π₯",
         | 
| 14 | 
            +
                "Backend π",
         | 
| 15 | 
            +
                "Params (B)",
         | 
| 16 | 
            +
                "Open LLM Score (%)",
         | 
| 17 | 
            +
                # deployment settings
         | 
| 18 | 
            +
                "DType π₯",
         | 
| 19 | 
            +
                "Backend π",
         | 
| 20 | 
            +
                "Quantization ποΈ",
         | 
| 21 | 
            +
                # primary measurements
         | 
| 22 | 
            +
                "Prefill Latency (s)",
         | 
| 23 | 
            +
                "Prefill Latency (s) FlashAttentionV2",
         | 
| 24 | 
            +
                "Decode Throughput (tokens/s)",
         | 
| 25 | 
            +
                "Decode Throughput (tokens/s) FlashAttentionV2",
         | 
| 26 | 
            +
                "E2E Throughput (tokens/s)",
         | 
| 27 | 
            +
                "E2E Throughput (tokens/s) FlashAttentionV2",
         | 
| 28 | 
            +
                # speedups
         | 
| 29 | 
            +
                "Prefill Latency Speedup (%)",
         | 
| 30 | 
            +
                "Decode Throughput Speedup (%)",
         | 
| 31 | 
            +
            ]
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            def get_fa2_df(llm_perf_df):
         | 
| 35 | 
            +
                fa2_df = llm_perf_df.copy()
         | 
| 36 | 
            +
                # process
         | 
| 37 | 
            +
                fa2_df["Arch ποΈ"] = fa2_df["Arch ποΈ"].apply(process_arch)
         | 
| 38 | 
            +
                # seperate original model experiments from FlashAttentionV2 experiments
         | 
| 39 | 
            +
                original_df = fa2_df[fa2_df["Optimization π οΈ"] == "None"]
         | 
| 40 | 
            +
                fa2_df = fa2_df[fa2_df["Optimization π οΈ"] == "FlashAttentionV2"]
         | 
| 41 | 
            +
                # merge the two dataframes
         | 
| 42 | 
            +
                fa2_df = pd.merge(
         | 
| 43 | 
            +
                    original_df,
         | 
| 44 | 
            +
                    fa2_df,
         | 
| 45 | 
            +
                    on=["Model π€", "Quantization ποΈ"],
         | 
| 46 | 
            +
                    suffixes=["", " FlashAttentionV2"],
         | 
| 47 | 
            +
                )
         | 
| 48 | 
            +
                # compute speedups
         | 
| 49 | 
            +
                fa2_df["Prefill Latency Speedup (%)"] = (
         | 
| 50 | 
            +
                    (fa2_df["Prefill Latency (s)"] / fa2_df["Prefill Latency (s) FlashAttentionV2"]) * 100
         | 
| 51 | 
            +
                ).round(2)
         | 
| 52 | 
            +
                fa2_df["Decode Throughput Speedup (%)"] = (
         | 
| 53 | 
            +
                    (fa2_df["Decode Throughput (tokens/s) FlashAttentionV2"] / fa2_df["Decode Throughput (tokens/s)"]) * 100
         | 
| 54 | 
            +
                ).round(2)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                # filter speedups > 1000%
         | 
| 57 | 
            +
                fa2_df = fa2_df[fa2_df["Prefill Latency Speedup (%)"] < 1000]
         | 
| 58 | 
            +
                fa2_df = fa2_df[fa2_df["Decode Throughput Speedup (%)"] < 1000]
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                return fa2_df
         | 
| 61 | 
            +
             | 
| 62 | 
            +
             | 
| 63 | 
            +
            def get_fa2_decode_fig(llm_perf_df):
         | 
| 64 | 
            +
                fa2_df = get_fa2_df(llm_perf_df)
         | 
| 65 | 
            +
                # plot
         | 
| 66 | 
            +
                decode_fig = px.box(
         | 
| 67 | 
            +
                    fa2_df,
         | 
| 68 | 
            +
                    x="Arch ποΈ",
         | 
| 69 | 
            +
                    y="Decode Throughput Speedup (%)",
         | 
| 70 | 
            +
                    color_discrete_sequence=px.colors.qualitative.Light24,
         | 
| 71 | 
            +
                    custom_data=FLASHATTENTIONV2_DATA,
         | 
| 72 | 
            +
                    color="Quantization ποΈ",
         | 
| 73 | 
            +
                    points="all",
         | 
| 74 | 
            +
                )
         | 
| 75 | 
            +
                # add hover data
         | 
| 76 | 
            +
                decode_fig.update_traces(
         | 
| 77 | 
            +
                    hovertemplate="<br>".join(
         | 
| 78 | 
            +
                        [f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(FLASHATTENTIONV2_DATA)]
         | 
| 79 | 
            +
                    )
         | 
| 80 | 
            +
                )
         | 
| 81 | 
            +
                # add layout
         | 
| 82 | 
            +
                decode_fig.update_layout(
         | 
| 83 | 
            +
                    title={
         | 
| 84 | 
            +
                        "text": "Decode Throughput Speedup per Architecture",
         | 
| 85 | 
            +
                        "y": 0.95,
         | 
| 86 | 
            +
                        "x": 0.5,
         | 
| 87 | 
            +
                        "xanchor": "center",
         | 
| 88 | 
            +
                        "yanchor": "top",
         | 
| 89 | 
            +
                    },
         | 
| 90 | 
            +
                    xaxis_title="LLM Architecture",
         | 
| 91 | 
            +
                    yaxis_title="Decode Speedup (%)",
         | 
| 92 | 
            +
                    legend_title="Quantization Scheme",
         | 
| 93 | 
            +
                    width=1200,
         | 
| 94 | 
            +
                    height=600,
         | 
| 95 | 
            +
                )
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                return decode_fig
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            def get_fa2_prefill_fig(llm_perf_df):
         | 
| 101 | 
            +
                fa2_df = get_fa2_df(llm_perf_df)
         | 
| 102 | 
            +
                # plot
         | 
| 103 | 
            +
                prefill_fig = px.box(
         | 
| 104 | 
            +
                    fa2_df,
         | 
| 105 | 
            +
                    x="Arch ποΈ",
         | 
| 106 | 
            +
                    y="Prefill Latency Speedup (%)",
         | 
| 107 | 
            +
                    color_discrete_sequence=px.colors.qualitative.Light24,
         | 
| 108 | 
            +
                    custom_data=FLASHATTENTIONV2_DATA,
         | 
| 109 | 
            +
                    color="Quantization ποΈ",
         | 
| 110 | 
            +
                    points="all",
         | 
| 111 | 
            +
                )
         | 
| 112 | 
            +
                # add hover data
         | 
| 113 | 
            +
                prefill_fig.update_traces(
         | 
| 114 | 
            +
                    hovertemplate="<br>".join(
         | 
| 115 | 
            +
                        [f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(FLASHATTENTIONV2_DATA)]
         | 
| 116 | 
            +
                    )
         | 
| 117 | 
            +
                )
         | 
| 118 | 
            +
                # add layout
         | 
| 119 | 
            +
                prefill_fig.update_layout(
         | 
| 120 | 
            +
                    title={
         | 
| 121 | 
            +
                        "text": "Prefill Latency Speedup per Architecture",
         | 
| 122 | 
            +
                        "y": 0.95,
         | 
| 123 | 
            +
                        "x": 0.5,
         | 
| 124 | 
            +
                        "xanchor": "center",
         | 
| 125 | 
            +
                        "yanchor": "top",
         | 
| 126 | 
            +
                    },
         | 
| 127 | 
            +
                    xaxis_title="LLM Architecture",
         | 
| 128 | 
            +
                    yaxis_title="Prefill Speedup (%)",
         | 
| 129 | 
            +
                    legend_title="Quantization Scheme",
         | 
| 130 | 
            +
                    width=1200,
         | 
| 131 | 
            +
                    height=600,
         | 
| 132 | 
            +
                )
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                return prefill_fig
         | 
| 135 | 
            +
             | 
| 136 | 
            +
             | 
| 137 | 
            +
            def create_fa2_plots(llm_perf_df):
         | 
| 138 | 
            +
                # descriptive text
         | 
| 139 | 
            +
                gr.HTML("π Hover over the points π for additional information.", elem_id="text")
         | 
| 140 | 
            +
                # get figures
         | 
| 141 | 
            +
                prefill_fig = get_fa2_prefill_fig(llm_perf_df)
         | 
| 142 | 
            +
                decode_fig = get_fa2_decode_fig(llm_perf_df)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                # create plots
         | 
| 145 | 
            +
                prefill_plot = gr.components.Plot(value=prefill_fig, elem_id="plot", show_label=False)
         | 
| 146 | 
            +
                decode_plot = gr.components.Plot(value=decode_fig, elem_id="plot", show_label=False)
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                return prefill_plot, decode_plot
         | 
    	
        src/latency_score_memory.py
    ADDED
    
    | @@ -0,0 +1,67 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            import plotly.express as px
         | 
| 3 | 
            +
             | 
| 4 | 
            +
             | 
| 5 | 
            +
            SCORE_MEMORY_LATENCY_DATA = [
         | 
| 6 | 
            +
                "Model π€",
         | 
| 7 | 
            +
                "Arch ποΈ",
         | 
| 8 | 
            +
                "Params (B)",
         | 
| 9 | 
            +
                "DType π₯",
         | 
| 10 | 
            +
                "Backend π",
         | 
| 11 | 
            +
                "Open LLM Score (%)",
         | 
| 12 | 
            +
                "Prefill Latency (s)",
         | 
| 13 | 
            +
                "Decode Throughput (tokens/s)",
         | 
| 14 | 
            +
                "Allocated Memory (MB)",
         | 
| 15 | 
            +
                "E2E Latency (s)",
         | 
| 16 | 
            +
                "E2E Throughput (tokens/s)",
         | 
| 17 | 
            +
            ]
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            def get_lat_score_mem_fig(llm_perf_df):
         | 
| 21 | 
            +
                copy_df = llm_perf_df.copy()
         | 
| 22 | 
            +
                # plot
         | 
| 23 | 
            +
                fig = px.scatter(
         | 
| 24 | 
            +
                    copy_df,
         | 
| 25 | 
            +
                    x="E2E Latency (s)",
         | 
| 26 | 
            +
                    y="Open LLM Score (%)",
         | 
| 27 | 
            +
                    size="Allocated Memory (MB)",
         | 
| 28 | 
            +
                    color="Arch ποΈ",
         | 
| 29 | 
            +
                    custom_data=SCORE_MEMORY_LATENCY_DATA,
         | 
| 30 | 
            +
                    color_discrete_sequence=px.colors.qualitative.Light24,
         | 
| 31 | 
            +
                )
         | 
| 32 | 
            +
                fig.update_traces(
         | 
| 33 | 
            +
                    hovertemplate="<br>".join(
         | 
| 34 | 
            +
                        [f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(SCORE_MEMORY_LATENCY_DATA)]
         | 
| 35 | 
            +
                    )
         | 
| 36 | 
            +
                )
         | 
| 37 | 
            +
                fig.update_layout(
         | 
| 38 | 
            +
                    title={
         | 
| 39 | 
            +
                        "text": "Latency vs. Score vs. Memory",
         | 
| 40 | 
            +
                        "y": 0.95,
         | 
| 41 | 
            +
                        "x": 0.5,
         | 
| 42 | 
            +
                        "xanchor": "center",
         | 
| 43 | 
            +
                        "yanchor": "top",
         | 
| 44 | 
            +
                    },
         | 
| 45 | 
            +
                    xaxis_title="Per 1000 Tokens Latency (s)",
         | 
| 46 | 
            +
                    yaxis_title="Open LLM Score (%)",
         | 
| 47 | 
            +
                    legend_title="LLM Architecture",
         | 
| 48 | 
            +
                    width=1200,
         | 
| 49 | 
            +
                    height=600,
         | 
| 50 | 
            +
                )
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                return fig
         | 
| 53 | 
            +
             | 
| 54 | 
            +
             | 
| 55 | 
            +
            def create_lat_score_mem_plot(llm_perf_df):
         | 
| 56 | 
            +
                # descriptive text
         | 
| 57 | 
            +
                gr.HTML("π Hover over the points π for additional information. ",elem_id="text")
         | 
| 58 | 
            +
                # get figure
         | 
| 59 | 
            +
                fig = get_lat_score_mem_fig(llm_perf_df)
         | 
| 60 | 
            +
                # create plot
         | 
| 61 | 
            +
                plot = gr.components.Plot(
         | 
| 62 | 
            +
                    value=fig,
         | 
| 63 | 
            +
                    elem_id="plot",
         | 
| 64 | 
            +
                    show_label=False,
         | 
| 65 | 
            +
                )
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                return plot
         | 
    	
        src/leaderboard.py
    ADDED
    
    | @@ -0,0 +1,60 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from src.utils import model_hyperlink, process_score
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            LEADERBOARD_COLUMN_TO_DATATYPE = {
         | 
| 7 | 
            +
                # open llm
         | 
| 8 | 
            +
                "Model π€" :"markdown",
         | 
| 9 | 
            +
                "Arch ποΈ" :"markdown",
         | 
| 10 | 
            +
                "Params (B)": "number",
         | 
| 11 | 
            +
                "Open LLM Score (%)": "number",
         | 
| 12 | 
            +
                # deployment settings
         | 
| 13 | 
            +
                "DType π₯" :"str",
         | 
| 14 | 
            +
                "Backend π" :"str",
         | 
| 15 | 
            +
                "Optimization π οΈ" :"str",
         | 
| 16 | 
            +
                "Quantization ποΈ" :"str",
         | 
| 17 | 
            +
                # primary measurements
         | 
| 18 | 
            +
                "Prefill Latency (s)": "number",
         | 
| 19 | 
            +
                "Decode Throughput (tokens/s)": "number",
         | 
| 20 | 
            +
                "Allocated Memory (MB)": "number",
         | 
| 21 | 
            +
                "Energy (tokens/kWh)": "number",
         | 
| 22 | 
            +
                # additional measurements
         | 
| 23 | 
            +
                "E2E Latency (s)": "number",
         | 
| 24 | 
            +
                "E2E Throughput (tokens/s)": "number",
         | 
| 25 | 
            +
                "Reserved Memory (MB)": "number",
         | 
| 26 | 
            +
                "Used Memory (MB)": "number",
         | 
| 27 | 
            +
            }
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            def process_model(model_name):
         | 
| 31 | 
            +
                link = f"https://huggingface.co/{model_name}"
         | 
| 32 | 
            +
                return model_hyperlink(link, model_name)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            def get_leaderboard_df(llm_perf_df):
         | 
| 36 | 
            +
                df = llm_perf_df.copy()
         | 
| 37 | 
            +
                # transform for leaderboard
         | 
| 38 | 
            +
                df["Model π€"] = df["Model π€"].apply(process_model)
         | 
| 39 | 
            +
                # process quantization for leaderboard
         | 
| 40 | 
            +
                df["Open LLM Score (%)"] = df.apply(
         | 
| 41 | 
            +
                    lambda x: process_score(x["Open LLM Score (%)"], x["Quantization ποΈ"]),
         | 
| 42 | 
            +
                    axis=1,
         | 
| 43 | 
            +
                )
         | 
| 44 | 
            +
                return df
         | 
| 45 | 
            +
             | 
| 46 | 
            +
             | 
| 47 | 
            +
            def create_leaderboard_table(llm_perf_df):
         | 
| 48 | 
            +
                # descriptive text
         | 
| 49 | 
            +
                gr.HTML("π Scroll to the right π for additional columns.", elem_id="text")
         | 
| 50 | 
            +
                # get dataframe
         | 
| 51 | 
            +
                leaderboard_df = get_leaderboard_df(llm_perf_df)
         | 
| 52 | 
            +
                # create table
         | 
| 53 | 
            +
                leaderboard_table = gr.components.Dataframe(
         | 
| 54 | 
            +
                    value=leaderboard_df,
         | 
| 55 | 
            +
                    datatype=list(LEADERBOARD_COLUMN_TO_DATATYPE.values()),
         | 
| 56 | 
            +
                    headers=list(LEADERBOARD_COLUMN_TO_DATATYPE.keys()),
         | 
| 57 | 
            +
                    elem_id="table",
         | 
| 58 | 
            +
                )
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                return leaderboard_table
         | 
    	
        src/llm_perf.py
    ADDED
    
    | @@ -0,0 +1,127 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import pandas as pd
         | 
| 4 | 
            +
            from huggingface_hub import hf_hub_download
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
         | 
| 7 | 
            +
            HF_TOKEN = os.environ.get("HF_TOKEN", None)
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            COLUMNS_MAPPING = {
         | 
| 10 | 
            +
                "Model": "Model π€",
         | 
| 11 | 
            +
                "Arch": "Arch ποΈ",
         | 
| 12 | 
            +
                "Size": "Params (B)",
         | 
| 13 | 
            +
                "Score": "Open LLM Score (%)",
         | 
| 14 | 
            +
                # deployment settings
         | 
| 15 | 
            +
                "backend.name": "Backend π",
         | 
| 16 | 
            +
                "backend.torch_dtype": "DType π₯",
         | 
| 17 | 
            +
                "optimization": "Optimization π οΈ",
         | 
| 18 | 
            +
                "quantization": "Quantization ποΈ",
         | 
| 19 | 
            +
                # primary measurements
         | 
| 20 | 
            +
                "forward.latency(s)": "Prefill Latency (s)",
         | 
| 21 | 
            +
                "decode.throughput(tokens/s)": "Decode Throughput (tokens/s)",
         | 
| 22 | 
            +
                "generate.max_memory_allocated(MB)": "Allocated Memory (MB)",
         | 
| 23 | 
            +
                "generate.energy_consumption(tokens/kWh)": "Energy (tokens/kWh)",
         | 
| 24 | 
            +
                # additional measurements
         | 
| 25 | 
            +
                "generate.latency(s)": "E2E Latency (s)",
         | 
| 26 | 
            +
                "generate.throughput(tokens/s)": "E2E Throughput (tokens/s)",
         | 
| 27 | 
            +
                "generate.max_memory_reserved(MB)": "Reserved Memory (MB)",
         | 
| 28 | 
            +
                "generate.max_memory_used(MB)": "Used Memory (MB)",
         | 
| 29 | 
            +
            }
         | 
| 30 | 
            +
            SORTING_COLUMNS = [
         | 
| 31 | 
            +
                "Open LLM Score (%)",
         | 
| 32 | 
            +
                "Prefill Latency (s)",
         | 
| 33 | 
            +
                "Decode Throughput (tokens/s)",
         | 
| 34 | 
            +
            ]
         | 
| 35 | 
            +
            SORTING_ASCENDING = [False, True, False]
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            def get_llm_df():
         | 
| 39 | 
            +
                hf_hub_download(
         | 
| 40 | 
            +
                    repo_id=LLM_PERF_DATASET_REPO,
         | 
| 41 | 
            +
                    filename="open-llm.csv",
         | 
| 42 | 
            +
                    local_dir="dataset",
         | 
| 43 | 
            +
                    repo_type="dataset",
         | 
| 44 | 
            +
                    token=HF_TOKEN,
         | 
| 45 | 
            +
                )
         | 
| 46 | 
            +
                llm_df = pd.read_csv("dataset/open-llm.csv")
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                return llm_df
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            def get_perf_df(machine: str = "hf-dgx-01"):
         | 
| 52 | 
            +
                hf_hub_download(
         | 
| 53 | 
            +
                    repo_id=LLM_PERF_DATASET_REPO,
         | 
| 54 | 
            +
                    filename=f"{machine}/perf-report.csv",
         | 
| 55 | 
            +
                    local_dir="dataset",
         | 
| 56 | 
            +
                    repo_type="dataset",
         | 
| 57 | 
            +
                    token=HF_TOKEN,
         | 
| 58 | 
            +
                )
         | 
| 59 | 
            +
                perf_df = pd.read_csv(f"dataset/{machine}/perf-report.csv")
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                return perf_df
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
            def get_llm_perf_df(machine: str = "hf-dgx-01"):
         | 
| 65 | 
            +
                # get dataframes
         | 
| 66 | 
            +
                llm_df = get_llm_df()
         | 
| 67 | 
            +
                perf_df = get_perf_df(machine=machine)
         | 
| 68 | 
            +
                llm_perf_df = pd.merge(llm_df, perf_df, left_on="Model", right_on="model")
         | 
| 69 | 
            +
                # some assertions
         | 
| 70 | 
            +
                assert llm_perf_df["benchmark.input_shapes.batch_size"].nunique() == 1
         | 
| 71 | 
            +
                assert llm_perf_df["benchmark.input_shapes.sequence_length"].nunique() == 1
         | 
| 72 | 
            +
                assert llm_perf_df["benchmark.new_tokens"].nunique() == 1
         | 
| 73 | 
            +
                # transpose energy consumption
         | 
| 74 | 
            +
                llm_perf_df["generate.energy_consumption(tokens/kWh)"] = (
         | 
| 75 | 
            +
                    1 / llm_perf_df["generate.energy_consumption(kWh/token)"].fillna(1)
         | 
| 76 | 
            +
                ).astype(int)
         | 
| 77 | 
            +
                # fix nan values
         | 
| 78 | 
            +
                llm_perf_df.loc[
         | 
| 79 | 
            +
                    llm_perf_df["generate.energy_consumption(tokens/kWh)"] == 1,
         | 
| 80 | 
            +
                    "generate.energy_consumption(tokens/kWh)",
         | 
| 81 | 
            +
                ] = pd.NA
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                # add optimization column
         | 
| 84 | 
            +
                llm_perf_df["optimization"] = llm_perf_df[["backend.to_bettertransformer", "backend.use_flash_attention_2"]].apply(
         | 
| 85 | 
            +
                    lambda x: "BetterTransformer"
         | 
| 86 | 
            +
                    if x["backend.to_bettertransformer"]
         | 
| 87 | 
            +
                    else ("FlashAttentionV2" if x["backend.use_flash_attention_2"] else "None"),
         | 
| 88 | 
            +
                    axis=1,
         | 
| 89 | 
            +
                )
         | 
| 90 | 
            +
                # add quantization scheme
         | 
| 91 | 
            +
                llm_perf_df["quantization"] = llm_perf_df[
         | 
| 92 | 
            +
                    [
         | 
| 93 | 
            +
                        "backend.quantization_scheme",
         | 
| 94 | 
            +
                        "backend.quantization_config.exllama_config.version",
         | 
| 95 | 
            +
                    ]
         | 
| 96 | 
            +
                ].apply(
         | 
| 97 | 
            +
                    lambda x: "BnB.4bit"
         | 
| 98 | 
            +
                    if x["backend.quantization_scheme"] == "bnb"
         | 
| 99 | 
            +
                    else (
         | 
| 100 | 
            +
                        "GPTQ.4bit+ExllamaV1"
         | 
| 101 | 
            +
                        if (x["backend.quantization_scheme"] == "gptq")
         | 
| 102 | 
            +
                        and (x["backend.quantization_config.exllama_config.version"] == 1)
         | 
| 103 | 
            +
                        else (
         | 
| 104 | 
            +
                            "GPTQ.4bit+ExllamaV2"
         | 
| 105 | 
            +
                            if (x["backend.quantization_scheme"] == "gptq")
         | 
| 106 | 
            +
                            and (x["backend.quantization_config.exllama_config.version"] == 2)
         | 
| 107 | 
            +
                            else "None"
         | 
| 108 | 
            +
                        )
         | 
| 109 | 
            +
                    ),
         | 
| 110 | 
            +
                    axis=1,
         | 
| 111 | 
            +
                )
         | 
| 112 | 
            +
                # add decode throughput
         | 
| 113 | 
            +
                llm_perf_df["decode.throughput(tokens/s)"] = (
         | 
| 114 | 
            +
                    1000 / (llm_perf_df["generate.latency(s)"] - llm_perf_df["forward.latency(s)"])
         | 
| 115 | 
            +
                ).round(2)
         | 
| 116 | 
            +
                # filter columns
         | 
| 117 | 
            +
                llm_perf_df = llm_perf_df[list(COLUMNS_MAPPING.keys())]
         | 
| 118 | 
            +
                # rename columns
         | 
| 119 | 
            +
                llm_perf_df.rename(columns=COLUMNS_MAPPING, inplace=True)
         | 
| 120 | 
            +
                # sort by metric
         | 
| 121 | 
            +
                llm_perf_df.sort_values(
         | 
| 122 | 
            +
                    by=SORTING_COLUMNS,
         | 
| 123 | 
            +
                    ascending=SORTING_ASCENDING,
         | 
| 124 | 
            +
                    inplace=True,
         | 
| 125 | 
            +
                )
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                return llm_perf_df
         | 
    	
        src/{assets/text_content.py β text.py}
    RENAMED
    
    | @@ -1,6 +1,6 @@ | |
| 1 | 
             
            TITLE = """<h1 align="center" id="space-title">π€ LLM-Perf Leaderboard ποΈ</h1>"""
         | 
| 2 |  | 
| 3 | 
            -
             | 
| 4 | 
             
            The π€ LLM-Perf Leaderboard ποΈ aims to benchmark the performance (latency, throughput, memory & energy) of Large Language Models (LLMs) with different hardwares, backends and optimizations using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark) and [Optimum](https://github.com/huggingface/optimum) flavors.
         | 
| 5 |  | 
| 6 | 
             
            Anyone from the community can request a model or a hardware/backend/optimization configuration for automated benchmarking:
         | 
| @@ -8,7 +8,7 @@ Anyone from the community can request a model or a hardware/backend/optimization | |
| 8 | 
             
            - Hardware/Backend/Optimization performance requests should be made in the [community discussions](https://huggingface.co/spaces/optimum/llm-perf-leaderboard/discussions) to assess their relevance and feasibility.
         | 
| 9 | 
             
            """
         | 
| 10 |  | 
| 11 | 
            -
             | 
| 12 | 
             
            <ul>
         | 
| 13 | 
             
                <li>To avoid communication-dependent results, only one GPU is used.</li>
         | 
| 14 | 
             
                <li>Score is the average evaluation score obtained from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">π€ Open LLM Leaderboard</a>.</li>
         | 
| @@ -18,11 +18,26 @@ ABOUT_TEXT = """<h3>About the π€ LLM-Perf Leaderboard ποΈ</h3> | |
| 18 | 
             
            </ul>
         | 
| 19 | 
             
            """
         | 
| 20 |  | 
| 21 | 
            -
             | 
| 22 | 
             
            Here's an example of the configuration file used to benchmark the models with Optimum-Benchmark:
         | 
| 23 | 
             
            ```yaml
         | 
| 24 | 
             
            defaults:
         | 
| 25 | 
            -
              - backend: pytorch | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 26 | 
             
              - benchmark: inference # default benchmark
         | 
| 27 | 
             
              - experiment # inheriting from experiment config
         | 
| 28 | 
             
              - _self_ # for hydra 1.1 compatibility
         | 
| @@ -31,39 +46,38 @@ defaults: | |
| 31 |  | 
| 32 | 
             
            hydra:
         | 
| 33 | 
             
              run:
         | 
| 34 | 
            -
                dir:  | 
| 35 | 
             
              job:
         | 
| 36 | 
             
                chdir: true
         | 
|  | |
|  | |
|  | |
| 37 |  | 
| 38 | 
            -
             | 
| 39 | 
            -
             | 
| 40 | 
            -
            model: {model}
         | 
| 41 | 
            -
             | 
| 42 | 
            -
            device: cuda
         | 
| 43 |  | 
| 44 | 
             
            backend:
         | 
| 45 | 
            -
               | 
| 46 | 
            -
               | 
| 47 | 
            -
              bettertransformer: true
         | 
| 48 | 
            -
              quantization_scheme: gptq
         | 
| 49 | 
            -
             | 
| 50 |  | 
| 51 | 
             
            benchmark:
         | 
|  | |
| 52 | 
             
              memory: true
         | 
| 53 | 
             
              energy: true
         | 
| 54 | 
            -
             | 
| 55 | 
             
              new_tokens: 1000
         | 
| 56 | 
             
              input_shapes:
         | 
| 57 | 
             
                batch_size: 1
         | 
| 58 | 
             
                sequence_length: 256
         | 
| 59 |  | 
| 60 | 
            -
             | 
|  | |
| 61 | 
             
            ```
         | 
| 62 | 
             
            """
         | 
| 63 |  | 
| 64 |  | 
| 65 | 
             
            CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results."
         | 
| 66 | 
            -
             | 
| 67 | 
             
              author = {Ilyas Moutawwakil, RΓ©gis Pierrard},
         | 
| 68 | 
             
              title = {LLM-Perf Leaderboard},
         | 
| 69 | 
             
              year = {2023},
         | 
|  | |
| 1 | 
             
            TITLE = """<h1 align="center" id="space-title">π€ LLM-Perf Leaderboard ποΈ</h1>"""
         | 
| 2 |  | 
| 3 | 
            +
            INTRODUCTION = """
         | 
| 4 | 
             
            The π€ LLM-Perf Leaderboard ποΈ aims to benchmark the performance (latency, throughput, memory & energy) of Large Language Models (LLMs) with different hardwares, backends and optimizations using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark) and [Optimum](https://github.com/huggingface/optimum) flavors.
         | 
| 5 |  | 
| 6 | 
             
            Anyone from the community can request a model or a hardware/backend/optimization configuration for automated benchmarking:
         | 
|  | |
| 8 | 
             
            - Hardware/Backend/Optimization performance requests should be made in the [community discussions](https://huggingface.co/spaces/optimum/llm-perf-leaderboard/discussions) to assess their relevance and feasibility.
         | 
| 9 | 
             
            """
         | 
| 10 |  | 
| 11 | 
            +
            ABOUT = """<h3>About the π€ LLM-Perf Leaderboard ποΈ</h3>
         | 
| 12 | 
             
            <ul>
         | 
| 13 | 
             
                <li>To avoid communication-dependent results, only one GPU is used.</li>
         | 
| 14 | 
             
                <li>Score is the average evaluation score obtained from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">π€ Open LLM Leaderboard</a>.</li>
         | 
|  | |
| 18 | 
             
            </ul>
         | 
| 19 | 
             
            """
         | 
| 20 |  | 
| 21 | 
            +
            EXAMPLE_CONFIG = """
         | 
| 22 | 
             
            Here's an example of the configuration file used to benchmark the models with Optimum-Benchmark:
         | 
| 23 | 
             
            ```yaml
         | 
| 24 | 
             
            defaults:
         | 
| 25 | 
            +
              - backend: pytorch
         | 
| 26 | 
            +
              - _base_ # inheriting from base config
         | 
| 27 | 
            +
              - _self_ # for hydra 1.1 compatibility
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            experiment_name: pytorch+cuda+float16+bettertransformer
         | 
| 30 | 
            +
            device: cuda
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            backend:
         | 
| 33 | 
            +
              no_weights: true
         | 
| 34 | 
            +
              torch_dtype: float16
         | 
| 35 | 
            +
              to_bettertransformer: true
         | 
| 36 | 
            +
            ```
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            Where the base config is:
         | 
| 39 | 
            +
            ```yaml
         | 
| 40 | 
            +
            defaults:
         | 
| 41 | 
             
              - benchmark: inference # default benchmark
         | 
| 42 | 
             
              - experiment # inheriting from experiment config
         | 
| 43 | 
             
              - _self_ # for hydra 1.1 compatibility
         | 
|  | |
| 46 |  | 
| 47 | 
             
            hydra:
         | 
| 48 | 
             
              run:
         | 
| 49 | 
            +
                dir: ???
         | 
| 50 | 
             
              job:
         | 
| 51 | 
             
                chdir: true
         | 
| 52 | 
            +
                env_set:
         | 
| 53 | 
            +
                  CUDA_VISIBLE_DEVICES: 0
         | 
| 54 | 
            +
                  CUDA_DEVICE_ORDER: PCI_BUS_ID
         | 
| 55 |  | 
| 56 | 
            +
            model: ???
         | 
| 57 | 
            +
            experiment_name: ???
         | 
|  | |
|  | |
|  | |
| 58 |  | 
| 59 | 
             
            backend:
         | 
| 60 | 
            +
              initial_isolation_check: true
         | 
| 61 | 
            +
              continous_isolation_check: true
         | 
|  | |
|  | |
|  | |
| 62 |  | 
| 63 | 
             
            benchmark:
         | 
| 64 | 
            +
              duration: 10
         | 
| 65 | 
             
              memory: true
         | 
| 66 | 
             
              energy: true
         | 
| 67 | 
            +
             | 
| 68 | 
             
              new_tokens: 1000
         | 
| 69 | 
             
              input_shapes:
         | 
| 70 | 
             
                batch_size: 1
         | 
| 71 | 
             
                sequence_length: 256
         | 
| 72 |  | 
| 73 | 
            +
            hub_kwargs:
         | 
| 74 | 
            +
              trust_remote_code: true
         | 
| 75 | 
             
            ```
         | 
| 76 | 
             
            """
         | 
| 77 |  | 
| 78 |  | 
| 79 | 
             
            CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results."
         | 
| 80 | 
            +
            CITATION_BUTTON = r"""@misc{llm-perf-leaderboard,
         | 
| 81 | 
             
              author = {Ilyas Moutawwakil, RΓ©gis Pierrard},
         | 
| 82 | 
             
              title = {LLM-Perf Leaderboard},
         | 
| 83 | 
             
              year = {2023},
         | 
    	
        src/utils.py
    CHANGED
    
    | @@ -1,22 +1,3 @@ | |
| 1 | 
            -
            from huggingface_hub import HfApi, Repository
         | 
| 2 | 
            -
            import gradio as gr
         | 
| 3 | 
            -
            import json
         | 
| 4 | 
            -
             | 
| 5 | 
            -
             | 
| 6 | 
            -
            def change_tab(query_param):
         | 
| 7 | 
            -
                query_param = query_param.replace("'", '"')
         | 
| 8 | 
            -
                query_param = json.loads(query_param)
         | 
| 9 | 
            -
             | 
| 10 | 
            -
                if (
         | 
| 11 | 
            -
                    isinstance(query_param, dict)
         | 
| 12 | 
            -
                    and "tab" in query_param
         | 
| 13 | 
            -
                    and query_param["tab"] == "plot"
         | 
| 14 | 
            -
                ):
         | 
| 15 | 
            -
                    return gr.Tabs.update(selected=1)
         | 
| 16 | 
            -
                else:
         | 
| 17 | 
            -
                    return gr.Tabs.update(selected=0)
         | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
             
            LLM_MODEL_ARCHS = {
         | 
| 21 | 
             
                "stablelm_epoch": "π΄ StableLM-Epoch",
         | 
| 22 | 
             
                "stablelm_alpha": "π΄ StableLM-Alpha",
         | 
| @@ -24,8 +5,8 @@ LLM_MODEL_ARCHS = { | |
| 24 | 
             
                "RefinedWebModel": "π¦
 Falcon",
         | 
| 25 | 
             
                "gpt_bigcode": "β StarCoder",
         | 
| 26 | 
             
                "RefinedWeb": "π¦
 Falcon",
         | 
| 27 | 
            -
                "baichuan": "π Baichuan ηΎε·", | 
| 28 | 
            -
                "internlm": "π§βπ InternLM δΉ¦η", | 
| 29 | 
             
                "mistral": "βοΈ Mistral",
         | 
| 30 | 
             
                "codegen": "βΎοΈ CodeGen",
         | 
| 31 | 
             
                "chatglm": "π¬ ChatGLM",
         | 
| @@ -34,7 +15,7 @@ LLM_MODEL_ARCHS = { | |
| 34 | 
             
                "llama": "π¦ LLaMA",
         | 
| 35 | 
             
                "rwkv": "π¦ββ¬ RWKV",
         | 
| 36 | 
             
                "mpt": "π§± MPT",
         | 
| 37 | 
            -
                "Yi": "π« Yi δΊΊ", # people
         | 
| 38 | 
             
                # suggest something
         | 
| 39 | 
             
                "gpt_neox": "GPT-NeoX",
         | 
| 40 | 
             
                "gpt_neo": "GPT-Neo",
         | 
| @@ -50,13 +31,25 @@ def model_hyperlink(link, model_name): | |
| 50 | 
             
                return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
         | 
| 51 |  | 
| 52 |  | 
| 53 | 
            -
            def  | 
| 54 | 
            -
                link = f"https://huggingface.co/{model_name}"
         | 
| 55 | 
            -
                return model_hyperlink(link, model_name)
         | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
            def process_model_arch(model_arch):
         | 
| 59 | 
             
                if model_arch in LLM_MODEL_ARCHS:
         | 
| 60 | 
             
                    return LLM_MODEL_ARCHS[model_arch]
         | 
| 61 | 
             
                else:
         | 
| 62 | 
             
                    return model_arch
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1 | 
             
            LLM_MODEL_ARCHS = {
         | 
| 2 | 
             
                "stablelm_epoch": "π΄ StableLM-Epoch",
         | 
| 3 | 
             
                "stablelm_alpha": "π΄ StableLM-Alpha",
         | 
|  | |
| 5 | 
             
                "RefinedWebModel": "π¦
 Falcon",
         | 
| 6 | 
             
                "gpt_bigcode": "β StarCoder",
         | 
| 7 | 
             
                "RefinedWeb": "π¦
 Falcon",
         | 
| 8 | 
            +
                "baichuan": "π Baichuan ηΎε·",  # river
         | 
| 9 | 
            +
                "internlm": "π§βπ InternLM δΉ¦η",  # scholar
         | 
| 10 | 
             
                "mistral": "βοΈ Mistral",
         | 
| 11 | 
             
                "codegen": "βΎοΈ CodeGen",
         | 
| 12 | 
             
                "chatglm": "π¬ ChatGLM",
         | 
|  | |
| 15 | 
             
                "llama": "π¦ LLaMA",
         | 
| 16 | 
             
                "rwkv": "π¦ββ¬ RWKV",
         | 
| 17 | 
             
                "mpt": "π§± MPT",
         | 
| 18 | 
            +
                "Yi": "π« Yi δΊΊ" , # people
         | 
| 19 | 
             
                # suggest something
         | 
| 20 | 
             
                "gpt_neox": "GPT-NeoX",
         | 
| 21 | 
             
                "gpt_neo": "GPT-Neo",
         | 
|  | |
| 31 | 
             
                return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
         | 
| 32 |  | 
| 33 |  | 
| 34 | 
            +
            def process_arch(model_arch):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 35 | 
             
                if model_arch in LLM_MODEL_ARCHS:
         | 
| 36 | 
             
                    return LLM_MODEL_ARCHS[model_arch]
         | 
| 37 | 
             
                else:
         | 
| 38 | 
             
                    return model_arch
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            def process_score(score, quantization):
         | 
| 42 | 
            +
                if quantization != "None":
         | 
| 43 | 
            +
                    return f"{score:.2f}*"
         | 
| 44 | 
            +
                else:
         | 
| 45 | 
            +
                    return f"{score:.2f} "
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            # def change_tab(query_param):
         | 
| 49 | 
            +
            #     query_param = query_param.replace("'", '"')
         | 
| 50 | 
            +
            #     query_param = json.loads(query_param)
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            #     if isinstance(query_param, dict) and "tab" in query_param and query_param["tab"] == "plot":
         | 
| 53 | 
            +
            #         return gr.Tabs.update(selected=1)
         | 
| 54 | 
            +
            #     else:
         | 
| 55 | 
            +
            #         return gr.Tabs.update(selected=0)
         | 
 
			

