Spaces:
Runtime error
Runtime error
| import torch | |
| from diffusers.pipelines import FluxPipeline | |
| from typing import List, Union, Optional, Dict, Any, Callable | |
| from .block import block_forward, single_block_forward | |
| from .lora_controller import enable_lora | |
| from accelerate.utils import is_torch_version | |
| from diffusers.models.transformers.transformer_flux import ( | |
| FluxTransformer2DModel, | |
| Transformer2DModelOutput, | |
| USE_PEFT_BACKEND, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| logger, | |
| ) | |
| import numpy as np | |
| def prepare_params( | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor = None, | |
| pooled_projections: torch.Tensor = None, | |
| timestep: torch.LongTensor = None, | |
| img_ids: torch.Tensor = None, | |
| txt_ids: torch.Tensor = None, | |
| guidance: torch.Tensor = None, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| controlnet_block_samples=None, | |
| controlnet_single_block_samples=None, | |
| return_dict: bool = True, | |
| **kwargs: dict, | |
| ): | |
| return ( | |
| hidden_states, | |
| encoder_hidden_states, | |
| pooled_projections, | |
| timestep, | |
| img_ids, | |
| txt_ids, | |
| guidance, | |
| joint_attention_kwargs, | |
| controlnet_block_samples, | |
| controlnet_single_block_samples, | |
| return_dict, | |
| ) | |
| def tranformer_forward( | |
| transformer: FluxTransformer2DModel, | |
| condition_latents: torch.Tensor, | |
| condition_ids: torch.Tensor, | |
| condition_type_ids: torch.Tensor, | |
| model_config: Optional[Dict[str, Any]] = {}, | |
| c_t=0, | |
| **params: dict, | |
| ): | |
| self = transformer | |
| use_condition = condition_latents is not None | |
| ( | |
| hidden_states, | |
| encoder_hidden_states, | |
| pooled_projections, | |
| timestep, | |
| img_ids, | |
| txt_ids, | |
| guidance, | |
| joint_attention_kwargs, | |
| controlnet_block_samples, | |
| controlnet_single_block_samples, | |
| return_dict, | |
| ) = prepare_params(**params) | |
| if joint_attention_kwargs is not None: | |
| joint_attention_kwargs = joint_attention_kwargs.copy() | |
| lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if ( | |
| joint_attention_kwargs is not None | |
| and joint_attention_kwargs.get("scale", None) is not None | |
| ): | |
| logger.warning( | |
| "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| with enable_lora((self.x_embedder,), model_config.get("latent_lora", False)): | |
| hidden_states = self.x_embedder(hidden_states) | |
| condition_latents = self.x_embedder(condition_latents) if use_condition else None | |
| timestep = timestep.to(hidden_states.dtype) * 1000 | |
| if guidance is not None: | |
| guidance = guidance.to(hidden_states.dtype) * 1000 | |
| else: | |
| guidance = None | |
| temb = ( | |
| self.time_text_embed(timestep, pooled_projections) | |
| if guidance is None | |
| else self.time_text_embed(timestep, guidance, pooled_projections) | |
| ) | |
| cond_temb = ( | |
| self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections) | |
| if guidance is None | |
| else self.time_text_embed( | |
| torch.ones_like(timestep) * c_t * 1000, torch.ones_like(guidance) * 1000, pooled_projections | |
| ) | |
| ) | |
| encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
| if txt_ids.ndim == 3: | |
| logger.warning( | |
| "Passing `txt_ids` 3d torch.Tensor is deprecated." | |
| "Please remove the batch dimension and pass it as a 2d torch Tensor" | |
| ) | |
| txt_ids = txt_ids[0] | |
| if img_ids.ndim == 3: | |
| logger.warning( | |
| "Passing `img_ids` 3d torch.Tensor is deprecated." | |
| "Please remove the batch dimension and pass it as a 2d torch Tensor" | |
| ) | |
| img_ids = img_ids[0] | |
| ids = torch.cat((txt_ids, img_ids), dim=0) | |
| image_rotary_emb = self.pos_embed(ids) | |
| if use_condition: | |
| # condition_ids[:, :1] = condition_type_ids | |
| cond_rotary_emb = self.pos_embed(condition_ids) | |
| # hidden_states = torch.cat([hidden_states, condition_latents], dim=1) | |
| for index_block, block in enumerate(self.transformer_blocks): | |
| if self.training and self.gradient_checkpointing: | |
| ckpt_kwargs: Dict[str, Any] = ( | |
| {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| ) | |
| encoder_hidden_states, hidden_states, condition_latents = ( | |
| torch.utils.checkpoint.checkpoint( | |
| block_forward, | |
| self=block, | |
| model_config=model_config, | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| condition_latents=condition_latents if use_condition else None, | |
| temb=temb, | |
| cond_temb=cond_temb if use_condition else None, | |
| cond_rotary_emb=cond_rotary_emb if use_condition else None, | |
| image_rotary_emb=image_rotary_emb, | |
| **ckpt_kwargs, | |
| ) | |
| ) | |
| else: | |
| encoder_hidden_states, hidden_states, condition_latents = block_forward( | |
| block, | |
| model_config=model_config, | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| condition_latents=condition_latents if use_condition else None, | |
| temb=temb, | |
| cond_temb=cond_temb if use_condition else None, | |
| cond_rotary_emb=cond_rotary_emb if use_condition else None, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| # controlnet residual | |
| if controlnet_block_samples is not None: | |
| interval_control = len(self.transformer_blocks) / len( | |
| controlnet_block_samples | |
| ) | |
| interval_control = int(np.ceil(interval_control)) | |
| hidden_states = ( | |
| hidden_states | |
| + controlnet_block_samples[index_block // interval_control] | |
| ) | |
| hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
| for index_block, block in enumerate(self.single_transformer_blocks): | |
| if self.training and self.gradient_checkpointing: | |
| ckpt_kwargs: Dict[str, Any] = ( | |
| {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| ) | |
| result = torch.utils.checkpoint.checkpoint( | |
| single_block_forward, | |
| self=block, | |
| model_config=model_config, | |
| hidden_states=hidden_states, | |
| temb=temb, | |
| image_rotary_emb=image_rotary_emb, | |
| **( | |
| { | |
| "condition_latents": condition_latents, | |
| "cond_temb": cond_temb, | |
| "cond_rotary_emb": cond_rotary_emb, | |
| } | |
| if use_condition | |
| else {} | |
| ), | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| result = single_block_forward( | |
| block, | |
| model_config=model_config, | |
| hidden_states=hidden_states, | |
| temb=temb, | |
| image_rotary_emb=image_rotary_emb, | |
| **( | |
| { | |
| "condition_latents": condition_latents, | |
| "cond_temb": cond_temb, | |
| "cond_rotary_emb": cond_rotary_emb, | |
| } | |
| if use_condition | |
| else {} | |
| ), | |
| ) | |
| if use_condition: | |
| hidden_states, condition_latents = result | |
| else: | |
| hidden_states = result | |
| # controlnet residual | |
| if controlnet_single_block_samples is not None: | |
| interval_control = len(self.single_transformer_blocks) / len( | |
| controlnet_single_block_samples | |
| ) | |
| interval_control = int(np.ceil(interval_control)) | |
| hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( | |
| hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
| + controlnet_single_block_samples[index_block // interval_control] | |
| ) | |
| hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
| hidden_states = self.norm_out(hidden_states, temb) | |
| output = self.proj_out(hidden_states) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |