Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| """ | |
| Created on Wed Nov 13 18:37:31 2024 | |
| @author: sabar | |
| """ | |
| import gradio as gr | |
| import cv2 | |
| import numpy as np | |
| import os | |
| import json | |
| from openvino.runtime import Core # Assuming you're using OpenVINO | |
| # from tqdm import tqdm | |
| from tf_post_processing import non_max_suppression #,optimized_object_detection | |
| # Load the OpenVINO model | |
| classification_model_xml = "./model/best_openvino_model/best.xml" | |
| core = Core() | |
| config = { | |
| "INFERENCE_NUM_THREADS": 2, | |
| "ENABLE_CPU_PINNING": True | |
| } | |
| model = core.read_model(model=classification_model_xml) | |
| compiled_model = core.compile_model(model=model, device_name="CPU", config=config) | |
| label_to_class_text = { | |
| 0: 'range', | |
| 1: 'entry door', | |
| 2: 'kitchen sink', | |
| 3: 'bathroom sink', | |
| 4: 'toilet', | |
| 5: 'double folding door', | |
| 6: 'window', | |
| 7: 'shower', | |
| 8: 'bathtub', | |
| 9: 'single folding door', | |
| 10: 'dishwasher', | |
| 11: 'refrigerator' | |
| } | |
| # Function to perform inference | |
| def predict_image(image): | |
| # Resize, preprocess, and reshape the input image | |
| img_size = 960 | |
| resized_image = cv2.resize(image, (img_size, img_size)) / 255.0 | |
| resized_image = resized_image.transpose(2, 0, 1) | |
| reshaped_image = np.expand_dims(resized_image, axis=0).astype(np.float32) | |
| im_height, im_width, _ = image.shape | |
| output_numpy = compiled_model(reshaped_image)[0] | |
| results = non_max_suppression(output_numpy, conf_thres=0.2, iou_thres=0.6, max_wh=15000)[0] | |
| # Prepare output paths | |
| output_path = "./output_file_train/" | |
| output_image_folder = os.path.join(output_path, "images_alienware_openvino/") | |
| os.makedirs(output_image_folder, exist_ok=True) | |
| output_json_folder = os.path.join(output_path, "json_output/") | |
| os.makedirs(output_json_folder, exist_ok=True) | |
| predictions = [] | |
| # Draw boxes and collect prediction data | |
| for result in results: | |
| boxes = result[:4] | |
| prob = result[4] | |
| classes = int(result[5]) | |
| x1, y1, x2, y2 = np.uint16([ | |
| boxes[0] * im_width, | |
| boxes[1] * im_height, | |
| boxes[2] * im_width, | |
| boxes[3] * im_height | |
| ]) | |
| if prob > 0.2: | |
| cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 0), 2) | |
| label_text = f"{classes} {round(prob, 2)}" | |
| cv2.putText(image, label_text, (x1, y1), 0, 0.5, (0, 255, 0), 2) | |
| # Store prediction info in a JSON-compatible format | |
| predictions.append({ | |
| "class": label_to_class_text[classes], | |
| "probability": round(float(prob), 2), | |
| "coordinates": { | |
| "xmin": int(x1), | |
| "ymin": int(y1), | |
| "xmax": int(x2), | |
| "ymax": int(y2) | |
| } | |
| }) | |
| # Save the processed image and JSON file | |
| output_image_path = os.path.join(output_image_folder, "result_image.jpg") | |
| cv2.imwrite(output_image_path, image) | |
| output_json_path = os.path.join(output_json_folder, "predictions.json") | |
| with open(output_json_path, 'w') as f: | |
| json.dump(predictions, f, indent=4) | |
| return output_image_path, predictions | |
| # Set up Gradio interface to read from sample folder | |
| def gradio_interface(): | |
| # sample_folder = "./sample" # Folder containing sample images | |
| # Sample images for demonstration (make sure these image paths exist) | |
| sample_images = [ | |
| "./sample/10_2.jpg", # replace with actual image paths | |
| "./sample/10_10.jpg", # replace with actual image paths | |
| "./sample/10_12.jpg" # replace with actual image paths | |
| ] | |
| # image_paths = [os.path.join(sample_folder, img) for img in os.listdir(sample_folder) if img.endswith(('.png', '.jpg', '.jpeg'))] | |
| results = [] | |
| os.makedirs("samples", exist_ok=True) | |
| for image_path in sample_images: | |
| image = cv2.imread(image_path) | |
| output_image_path, predictions = predict_image(image) | |
| results.append({ | |
| "image_path": output_image_path, | |
| "predictions": predictions | |
| }) | |
| return results | |
| # Launch the Gradio app | |
| gr.Interface( | |
| fn=gradio_interface, | |
| inputs=None, | |
| outputs="json", | |
| title="OpenVINO Model Inference with Gradio", | |
| description="Reads images from the 'sample' folder to get model predictions with bounding boxes and probabilities." | |
| ).launch() | |