Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import cv2 | |
| import numpy as np | |
| import os | |
| import json | |
| from openvino.runtime import Core # Assuming you're using OpenVINO | |
| from tqdm import tqdm | |
| from PIL import Image | |
| from tf_post_processing import non_max_suppression #,optimized_object_detection | |
| # Load the OpenVINO model | |
| classification_model_xml = "./model/best.xml" | |
| core = Core() | |
| config = { | |
| "INFERENCE_NUM_THREADS": 2, | |
| "ENABLE_CPU_PINNING": True | |
| } | |
| model = core.read_model(model=classification_model_xml) | |
| compiled_model = core.compile_model(model=model, device_name="CPU", config=config) | |
| label_to_class_text = {0: 'range', | |
| 1: ' entry door', | |
| 2: 'kitchen sink', | |
| 3: ' bathroom sink', | |
| 4: 'toilet', | |
| 5: 'double folding door', | |
| 6: 'window', | |
| 7: 'shower', | |
| 8: 'bathtub', | |
| 9: 'single folding door', | |
| 10: 'dishwasher', | |
| 11: 'refrigerator'} | |
| # Function to perform inference | |
| def predict_image(image): | |
| # Convert PIL Image to numpy array (OpenCV uses numpy arrays) | |
| image = np.array(image) | |
| temp_image =image | |
| # Resize, preprocess, and reshape the input image | |
| img_size = 960 | |
| resized_image = cv2.resize(image, (img_size, img_size)) / 255.0 | |
| resized_image = resized_image.transpose(2, 0, 1) | |
| reshaped_image = np.expand_dims(resized_image, axis=0).astype(np.float32) | |
| im_height, im_width, _ = image.shape | |
| output_numpy = compiled_model(reshaped_image)[0] | |
| results = non_max_suppression(output_numpy, conf_thres=0.2, iou_thres=0.6, max_wh=15000)[0] | |
| # Prepare output paths | |
| predictions = [] | |
| # Draw boxes and collect prediction data | |
| for result in results: | |
| boxes = result[:4] | |
| probs = result[4] | |
| #prob0 = round(prob, 2) | |
| classes = int(result[5]) | |
| boxes = boxes/img_size | |
| x1, y1, x2, y2 = np.uint16([ | |
| boxes[0] * im_width, | |
| boxes[1] * im_height, | |
| boxes[2] * im_width, | |
| boxes[3] * im_height | |
| ]) | |
| if probs > 0.2: | |
| cv2.rectangle(temp_image, (x1, y1), (x2, y2), (0, 0, 255), 2) | |
| #label_text = f"{classes} {prob0}" | |
| cv2.putText(temp_image, str(classes)+" "+str(round(float(probs),2)), (x1, y1), 0, 0.5, (0, 255, 0), 2) | |
| # Store prediction info in a JSON-compatible format | |
| predictions.append({ | |
| "class": label_to_class_text[classes], | |
| "probability": round(float(probs), 3), | |
| "coordinates": { | |
| "xmin": int(x1), | |
| "ymin": int(y1), | |
| "xmax": int(x2), | |
| "ymax": int(y2) | |
| } | |
| }) | |
| # Convert the processed image back to PIL Image for Gradio | |
| pil_image = Image.fromarray(cv2.cvtColor(temp_image, cv2.COLOR_BGR2RGB)) | |
| return pil_image, json.dumps(predictions, indent=4) | |
| # Sample images for Gradio examples | |
| # Define sample images for user convenience | |
| sample_images = [ | |
| "./sample/10_2.jpg", | |
| "./sample/10_10.jpg", | |
| "./sample/10_12.jpg" | |
| ] | |
| # Gradio UI setup with examples | |
| gr_interface = gr.Interface( | |
| fn=predict_image, | |
| inputs=gr.Image(type="pil"), # Updated to gr.Image for image input | |
| outputs=[gr.Image(type="pil"), gr.Textbox()], # Updated to gr.Image and gr.Textbox | |
| title="House CAD Design Object Detection", | |
| description="Upload a CAD design image of a house to detect objects with bounding boxes and probabilities.", | |
| examples=sample_images # Add the examples here | |
| ) | |
| # Launch the Gradio interface if run as main | |
| if __name__ == "__main__": | |
| gr_interface.launch() | |