Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig | |
| import spaces | |
| import torch | |
| from safetensors import safe_open | |
| from jaxtyping import Float, Int | |
| from typing import List, Callable | |
| from torch import Tensor | |
| from threading import Thread | |
| import einops | |
| model_id = "MaziyarPanahi/Meta-Llama-3-70B-Instruct-GPTQ" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| quantize_config = BaseQuantizeConfig( | |
| bits=4, | |
| group_size=128, | |
| desc_act=False | |
| ) | |
| model = AutoGPTQForCausalLM.from_quantized( | |
| model_id, | |
| device="cuda:0", | |
| use_safetensors=True, | |
| disable_exllamav2=True, | |
| quantize_config=quantize_config).eval() | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device=torch.device("cuda")) | |
| streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True) | |
| thread = Thread( | |
| target=model.generate, | |
| kwargs={ | |
| "inputs": inputs, | |
| "max_new_tokens": max_tokens, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "streamer": streamer, | |
| }, | |
| ) | |
| thread.start() | |
| for new_text in streamer: | |
| token = new_text.choices[0].delta.content | |
| response += token | |
| yield response | |
| def get_orthogonalized_matrix(matrix: Float[Tensor, '... d_model'], vec: Float[Tensor, 'd_model']) -> Float[Tensor, '... d_model']: | |
| device = matrix.device | |
| vec = vec.to(device) | |
| proj = einops.einsum(matrix, vec.view(-1, 1), '... d_model, d_model single -> ... single') * vec | |
| return matrix - proj | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| # get refusal_dir from refusal_dir.safetensors file. | |
| with safe_open("refusal_dir.safetensors", framework="pt", device="cpu") as f: | |
| refusal_dir = f.get_tensor("refusal_dir") | |
| refusal_dir = refusal_dir.cpu().float() | |
| model.model.embed_tokens.weight.data = get_orthogonalized_matrix(model.model.embed_tokens.weight, refusal_dir) | |
| for block in model.model.layers: | |
| block.self_attn.o_proj.weight.data = get_orthogonalized_matrix(block.self_attn.o_proj.weight, refusal_dir) | |
| block.mlp.down_proj.weight.data = get_orthogonalized_matrix(block.mlp.down_proj.weight.T, refusal_dir).T | |
| demo.launch() |