Spaces:
Runtime error
Runtime error
Corey Morris
commited on
Commit
·
2b55a03
1
Parent(s):
298ba1f
Extracted plotting functions from moral_app to plotting_utils to improve organization and testability
Browse files- moral_app.py +42 -168
- plotting_utils.py +152 -0
moral_app.py
CHANGED
|
@@ -5,90 +5,10 @@ from result_data_processor import ResultDataProcessor
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import numpy as np
|
| 7 |
import plotly.graph_objects as go
|
|
|
|
| 8 |
|
| 9 |
st.set_page_config(layout="wide")
|
| 10 |
|
| 11 |
-
def plot_top_n(df, target_column, n=10):
|
| 12 |
-
top_n = df.nlargest(n, target_column)
|
| 13 |
-
|
| 14 |
-
# Initialize the bar plot
|
| 15 |
-
fig, ax1 = plt.subplots(figsize=(10, 5))
|
| 16 |
-
|
| 17 |
-
# Set width for each bar and their positions
|
| 18 |
-
width = 0.28
|
| 19 |
-
ind = np.arange(len(top_n))
|
| 20 |
-
|
| 21 |
-
# Plot target_column and MMLU_average on the primary y-axis with adjusted positions
|
| 22 |
-
ax1.bar(ind - width, top_n[target_column], width=width, color='blue', label=target_column)
|
| 23 |
-
ax1.bar(ind, top_n['MMLU_average'], width=width, color='orange', label='MMLU_average')
|
| 24 |
-
|
| 25 |
-
# Set the primary y-axis labels and title
|
| 26 |
-
ax1.set_title(f'Top {n} performing models on {target_column}')
|
| 27 |
-
ax1.set_xlabel('Model')
|
| 28 |
-
ax1.set_ylabel('Score')
|
| 29 |
-
|
| 30 |
-
# Create a secondary y-axis for Parameters
|
| 31 |
-
ax2 = ax1.twinx()
|
| 32 |
-
|
| 33 |
-
# Plot Parameters as bars on the secondary y-axis with adjusted position
|
| 34 |
-
ax2.bar(ind + width, top_n['Parameters'], width=width, color='red', label='Parameters')
|
| 35 |
-
|
| 36 |
-
# Set the secondary y-axis labels
|
| 37 |
-
ax2.set_ylabel('Parameters', color='red')
|
| 38 |
-
ax2.tick_params(axis='y', labelcolor='red')
|
| 39 |
-
|
| 40 |
-
# Set the x-ticks and their labels
|
| 41 |
-
ax1.set_xticks(ind)
|
| 42 |
-
ax1.set_xticklabels(top_n.index, rotation=45, ha="right")
|
| 43 |
-
|
| 44 |
-
# Adjust the legend
|
| 45 |
-
fig.tight_layout()
|
| 46 |
-
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
| 47 |
-
|
| 48 |
-
# Show the plot
|
| 49 |
-
st.pyplot(fig)
|
| 50 |
-
|
| 51 |
-
# Function to create an unfilled radar chart
|
| 52 |
-
def create_radar_chart_unfilled(df, model_names, metrics):
|
| 53 |
-
fig = go.Figure()
|
| 54 |
-
min_value = df.loc[model_names, metrics].min().min()
|
| 55 |
-
max_value = df.loc[model_names, metrics].max().max()
|
| 56 |
-
for model_name in model_names:
|
| 57 |
-
values_model = df.loc[model_name, metrics]
|
| 58 |
-
fig.add_trace(go.Scatterpolar(
|
| 59 |
-
r=values_model,
|
| 60 |
-
theta=metrics,
|
| 61 |
-
name=model_name
|
| 62 |
-
))
|
| 63 |
-
|
| 64 |
-
fig.update_layout(
|
| 65 |
-
polar=dict(
|
| 66 |
-
radialaxis=dict(
|
| 67 |
-
visible=True,
|
| 68 |
-
range=[min_value, max_value]
|
| 69 |
-
)),
|
| 70 |
-
showlegend=True,
|
| 71 |
-
width=800, # Change the width as needed
|
| 72 |
-
height=600 # Change the height as needed
|
| 73 |
-
)
|
| 74 |
-
return fig
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# Function to create a line chart
|
| 79 |
-
def create_line_chart(df, model_names, metrics):
|
| 80 |
-
line_data = []
|
| 81 |
-
for model_name in model_names:
|
| 82 |
-
values_model = df.loc[model_name, metrics]
|
| 83 |
-
for metric, value in zip(metrics, values_model):
|
| 84 |
-
line_data.append({'Model': model_name, 'Metric': metric, 'Value': value})
|
| 85 |
-
|
| 86 |
-
line_df = pd.DataFrame(line_data)
|
| 87 |
-
|
| 88 |
-
fig = px.line(line_df, x='Metric', y='Value', color='Model', title='Comparison of Models', line_dash_sequence=['solid'])
|
| 89 |
-
fig.update_layout(showlegend=True)
|
| 90 |
-
return fig
|
| 91 |
-
|
| 92 |
def find_top_differences_table(df, target_model, closest_models, num_differences=10, exclude_columns=['Parameters', 'organization']):
|
| 93 |
# Calculate the absolute differences for each task between the target model and the closest models
|
| 94 |
new_df = df.drop(columns=exclude_columns)
|
|
@@ -104,6 +24,10 @@ def find_top_differences_table(df, target_model, closest_models, num_differences
|
|
| 104 |
unique_top_differences_tasks = list(set(top_differences_table['Task'].tolist()))
|
| 105 |
return top_differences_table, unique_top_differences_tasks
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
data_provider = ResultDataProcessor()
|
| 108 |
|
| 109 |
st.title('Why are large language models so bad at the moral scenarios task?')
|
|
@@ -171,9 +95,9 @@ column_search_query = st.text_input("Filter by Column/Task Name:", "")
|
|
| 171 |
# Get the columns that contain the search query
|
| 172 |
matching_columns = [col for col in filtered_data.columns if column_search_query.lower() in col.lower()]
|
| 173 |
|
| 174 |
-
# Display the DataFrame with only the matching columns
|
| 175 |
-
st.markdown("## Sortable Results")
|
| 176 |
-
st.dataframe(filtered_data[matching_columns])
|
| 177 |
|
| 178 |
|
| 179 |
# CSV download
|
|
@@ -189,70 +113,43 @@ st.download_button(
|
|
| 189 |
)
|
| 190 |
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
-
# remove rows with NaN values
|
| 197 |
-
df = df.dropna(subset=[x_values, y_values])
|
| 198 |
|
| 199 |
-
plot_data = pd.DataFrame({
|
| 200 |
-
'Model': df.index,
|
| 201 |
-
x_values: df[x_values],
|
| 202 |
-
y_values: df[y_values],
|
| 203 |
-
})
|
| 204 |
|
| 205 |
-
plot_data['color'] = 'purple'
|
| 206 |
-
fig = px.scatter(plot_data, x=x_values, y=y_values, color='color', hover_data=['Model'], trendline="ols")
|
| 207 |
-
|
| 208 |
-
# If title is not provided, use x_values vs. y_values as the default title
|
| 209 |
-
if title is None:
|
| 210 |
-
title = x_values + " vs. " + y_values
|
| 211 |
-
|
| 212 |
-
layout_args = dict(
|
| 213 |
-
showlegend=False,
|
| 214 |
-
xaxis_title=x_values,
|
| 215 |
-
yaxis_title=y_values,
|
| 216 |
-
xaxis=dict(),
|
| 217 |
-
yaxis=dict(),
|
| 218 |
-
title=title,
|
| 219 |
-
height=500,
|
| 220 |
-
width=1000,
|
| 221 |
-
)
|
| 222 |
-
fig.update_layout(**layout_args)
|
| 223 |
-
|
| 224 |
-
# Add a dashed line at 0.25 for the y_values
|
| 225 |
-
x_min = df[x_values].min()
|
| 226 |
-
x_max = df[x_values].max()
|
| 227 |
-
|
| 228 |
-
y_min = df[y_values].min()
|
| 229 |
-
y_max = df[y_values].max()
|
| 230 |
-
|
| 231 |
-
if x_values.startswith('MMLU'):
|
| 232 |
-
fig.add_shape(
|
| 233 |
-
type='line',
|
| 234 |
-
x0=0.25, x1=0.25,
|
| 235 |
-
y0=y_min, y1=y_max,
|
| 236 |
-
line=dict(
|
| 237 |
-
color='red',
|
| 238 |
-
width=2,
|
| 239 |
-
dash='dash'
|
| 240 |
-
)
|
| 241 |
-
)
|
| 242 |
-
|
| 243 |
-
if y_values.startswith('MMLU'):
|
| 244 |
-
fig.add_shape(
|
| 245 |
-
type='line',
|
| 246 |
-
x0=x_min, x1=x_max,
|
| 247 |
-
y0=0.25, y1=0.25,
|
| 248 |
-
line=dict(
|
| 249 |
-
color='red',
|
| 250 |
-
width=2,
|
| 251 |
-
dash='dash'
|
| 252 |
-
)
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
return fig
|
| 256 |
|
| 257 |
|
| 258 |
# Custom scatter plots
|
|
@@ -325,31 +222,8 @@ plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10)
|
|
| 325 |
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
|
| 326 |
st.plotly_chart(fig)
|
| 327 |
|
| 328 |
-
# Moral scenarios plots
|
| 329 |
-
st.markdown("### Moral Scenarios Performance")
|
| 330 |
-
def show_random_moral_scenarios_question():
|
| 331 |
-
moral_scenarios_data = pd.read_csv('moral_scenarios_questions.csv')
|
| 332 |
-
random_question = moral_scenarios_data.sample()
|
| 333 |
-
expander = st.expander("Show a random moral scenarios question")
|
| 334 |
-
expander.write(random_question['query'].values[0])
|
| 335 |
-
|
| 336 |
-
show_random_moral_scenarios_question()
|
| 337 |
-
|
| 338 |
-
st.write("""
|
| 339 |
-
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher.
|
| 340 |
-
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help
|
| 341 |
-
identify capabilities that are important for moral reasoning.
|
| 342 |
-
""")
|
| 343 |
-
|
| 344 |
-
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
| 345 |
-
st.plotly_chart(fig)
|
| 346 |
-
st.write()
|
| 347 |
-
|
| 348 |
|
| 349 |
|
| 350 |
-
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
| 351 |
-
st.plotly_chart(fig)
|
| 352 |
-
|
| 353 |
|
| 354 |
|
| 355 |
|
|
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import numpy as np
|
| 7 |
import plotly.graph_objects as go
|
| 8 |
+
from plotting_utils import plot_top_n, create_radar_chart_unfilled, create_line_chart, create_plot
|
| 9 |
|
| 10 |
st.set_page_config(layout="wide")
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def find_top_differences_table(df, target_model, closest_models, num_differences=10, exclude_columns=['Parameters', 'organization']):
|
| 13 |
# Calculate the absolute differences for each task between the target model and the closest models
|
| 14 |
new_df = df.drop(columns=exclude_columns)
|
|
|
|
| 24 |
unique_top_differences_tasks = list(set(top_differences_table['Task'].tolist()))
|
| 25 |
return top_differences_table, unique_top_differences_tasks
|
| 26 |
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Main Application
|
| 30 |
+
|
| 31 |
data_provider = ResultDataProcessor()
|
| 32 |
|
| 33 |
st.title('Why are large language models so bad at the moral scenarios task?')
|
|
|
|
| 95 |
# Get the columns that contain the search query
|
| 96 |
matching_columns = [col for col in filtered_data.columns if column_search_query.lower() in col.lower()]
|
| 97 |
|
| 98 |
+
# # Display the DataFrame with only the matching columns
|
| 99 |
+
# st.markdown("## Sortable Results")
|
| 100 |
+
# st.dataframe(filtered_data[matching_columns])
|
| 101 |
|
| 102 |
|
| 103 |
# CSV download
|
|
|
|
| 113 |
)
|
| 114 |
|
| 115 |
|
| 116 |
+
# Moral Scenarios section
|
| 117 |
+
st.markdown("## Why are large language models so bad at the moral scenarios task?")
|
| 118 |
+
st.markdown("### The structure of the task is odd")
|
| 119 |
+
|
| 120 |
+
# - Are the models actually bad at moral reasoning ?
|
| 121 |
+
# - Is it the structure of the task that is the causing the poor performance ?
|
| 122 |
+
# - Are there other tasks with questions in a similar structure ?
|
| 123 |
+
# - How do models perform when the structure of the task is changed ?
|
| 124 |
+
st.markdown("### Moral Scenarios Performance")
|
| 125 |
+
def show_random_moral_scenarios_question():
|
| 126 |
+
moral_scenarios_data = pd.read_csv('moral_scenarios_questions.csv')
|
| 127 |
+
random_question = moral_scenarios_data.sample()
|
| 128 |
+
expander = st.expander("Show a random moral scenarios question")
|
| 129 |
+
expander.write(random_question['query'].values[0])
|
| 130 |
+
|
| 131 |
+
show_random_moral_scenarios_question()
|
| 132 |
+
|
| 133 |
+
st.write("""
|
| 134 |
+
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher.
|
| 135 |
+
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help
|
| 136 |
+
identify capabilities that are important for moral reasoning.
|
| 137 |
+
""")
|
| 138 |
+
|
| 139 |
+
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
| 140 |
+
st.plotly_chart(fig)
|
| 141 |
+
st.write()
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
| 146 |
+
st.plotly_chart(fig)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
|
|
|
|
|
|
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
|
| 155 |
# Custom scatter plots
|
|
|
|
| 222 |
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
|
| 223 |
st.plotly_chart(fig)
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
|
| 229 |
|
plotting_utils.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import numpy as np
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
|
| 8 |
+
def plot_top_n(df, target_column, n=10):
|
| 9 |
+
top_n = df.nlargest(n, target_column)
|
| 10 |
+
|
| 11 |
+
# Initialize the bar plot
|
| 12 |
+
fig, ax1 = plt.subplots(figsize=(10, 5))
|
| 13 |
+
|
| 14 |
+
# Set width for each bar and their positions
|
| 15 |
+
width = 0.28
|
| 16 |
+
ind = np.arange(len(top_n))
|
| 17 |
+
|
| 18 |
+
# Plot target_column and MMLU_average on the primary y-axis with adjusted positions
|
| 19 |
+
ax1.bar(ind - width, top_n[target_column], width=width, color='blue', label=target_column)
|
| 20 |
+
ax1.bar(ind, top_n['MMLU_average'], width=width, color='orange', label='MMLU_average')
|
| 21 |
+
|
| 22 |
+
# Set the primary y-axis labels and title
|
| 23 |
+
ax1.set_title(f'Top {n} performing models on {target_column}')
|
| 24 |
+
ax1.set_xlabel('Model')
|
| 25 |
+
ax1.set_ylabel('Score')
|
| 26 |
+
|
| 27 |
+
# Create a secondary y-axis for Parameters
|
| 28 |
+
ax2 = ax1.twinx()
|
| 29 |
+
|
| 30 |
+
# Plot Parameters as bars on the secondary y-axis with adjusted position
|
| 31 |
+
ax2.bar(ind + width, top_n['Parameters'], width=width, color='red', label='Parameters')
|
| 32 |
+
|
| 33 |
+
# Set the secondary y-axis labels
|
| 34 |
+
ax2.set_ylabel('Parameters', color='red')
|
| 35 |
+
ax2.tick_params(axis='y', labelcolor='red')
|
| 36 |
+
|
| 37 |
+
# Set the x-ticks and their labels
|
| 38 |
+
ax1.set_xticks(ind)
|
| 39 |
+
ax1.set_xticklabels(top_n.index, rotation=45, ha="right")
|
| 40 |
+
|
| 41 |
+
# Adjust the legend
|
| 42 |
+
fig.tight_layout()
|
| 43 |
+
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
| 44 |
+
|
| 45 |
+
# Show the plot
|
| 46 |
+
st.pyplot(fig)
|
| 47 |
+
|
| 48 |
+
# Function to create an unfilled radar chart
|
| 49 |
+
def create_radar_chart_unfilled(df, model_names, metrics):
|
| 50 |
+
fig = go.Figure()
|
| 51 |
+
min_value = df.loc[model_names, metrics].min().min()
|
| 52 |
+
max_value = df.loc[model_names, metrics].max().max()
|
| 53 |
+
for model_name in model_names:
|
| 54 |
+
values_model = df.loc[model_name, metrics]
|
| 55 |
+
fig.add_trace(go.Scatterpolar(
|
| 56 |
+
r=values_model,
|
| 57 |
+
theta=metrics,
|
| 58 |
+
name=model_name
|
| 59 |
+
))
|
| 60 |
+
|
| 61 |
+
fig.update_layout(
|
| 62 |
+
polar=dict(
|
| 63 |
+
radialaxis=dict(
|
| 64 |
+
visible=True,
|
| 65 |
+
range=[min_value, max_value]
|
| 66 |
+
)),
|
| 67 |
+
showlegend=True,
|
| 68 |
+
width=800, # Change the width as needed
|
| 69 |
+
height=600 # Change the height as needed
|
| 70 |
+
)
|
| 71 |
+
return fig
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# Function to create a line chart
|
| 76 |
+
def create_line_chart(df, model_names, metrics):
|
| 77 |
+
line_data = []
|
| 78 |
+
for model_name in model_names:
|
| 79 |
+
values_model = df.loc[model_name, metrics]
|
| 80 |
+
for metric, value in zip(metrics, values_model):
|
| 81 |
+
line_data.append({'Model': model_name, 'Metric': metric, 'Value': value})
|
| 82 |
+
|
| 83 |
+
line_df = pd.DataFrame(line_data)
|
| 84 |
+
|
| 85 |
+
fig = px.line(line_df, x='Metric', y='Value', color='Model', title='Comparison of Models', line_dash_sequence=['solid'])
|
| 86 |
+
fig.update_layout(showlegend=True)
|
| 87 |
+
return fig
|
| 88 |
+
|
| 89 |
+
def create_plot(df, x_values, y_values, models=None, title=None):
|
| 90 |
+
if models is not None:
|
| 91 |
+
df = df[df.index.isin(models)]
|
| 92 |
+
|
| 93 |
+
# remove rows with NaN values
|
| 94 |
+
df = df.dropna(subset=[x_values, y_values])
|
| 95 |
+
|
| 96 |
+
plot_data = pd.DataFrame({
|
| 97 |
+
'Model': df.index,
|
| 98 |
+
x_values: df[x_values],
|
| 99 |
+
y_values: df[y_values],
|
| 100 |
+
})
|
| 101 |
+
|
| 102 |
+
plot_data['color'] = 'purple'
|
| 103 |
+
fig = px.scatter(plot_data, x=x_values, y=y_values, color='color', hover_data=['Model'], trendline="ols")
|
| 104 |
+
|
| 105 |
+
# If title is not provided, use x_values vs. y_values as the default title
|
| 106 |
+
if title is None:
|
| 107 |
+
title = x_values + " vs. " + y_values
|
| 108 |
+
|
| 109 |
+
layout_args = dict(
|
| 110 |
+
showlegend=False,
|
| 111 |
+
xaxis_title=x_values,
|
| 112 |
+
yaxis_title=y_values,
|
| 113 |
+
xaxis=dict(),
|
| 114 |
+
yaxis=dict(),
|
| 115 |
+
title=title,
|
| 116 |
+
height=500,
|
| 117 |
+
width=1000,
|
| 118 |
+
)
|
| 119 |
+
fig.update_layout(**layout_args)
|
| 120 |
+
|
| 121 |
+
# Add a dashed line at 0.25 for the y_values
|
| 122 |
+
x_min = df[x_values].min()
|
| 123 |
+
x_max = df[x_values].max()
|
| 124 |
+
|
| 125 |
+
y_min = df[y_values].min()
|
| 126 |
+
y_max = df[y_values].max()
|
| 127 |
+
|
| 128 |
+
if x_values.startswith('MMLU'):
|
| 129 |
+
fig.add_shape(
|
| 130 |
+
type='line',
|
| 131 |
+
x0=0.25, x1=0.25,
|
| 132 |
+
y0=y_min, y1=y_max,
|
| 133 |
+
line=dict(
|
| 134 |
+
color='red',
|
| 135 |
+
width=2,
|
| 136 |
+
dash='dash'
|
| 137 |
+
)
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
if y_values.startswith('MMLU'):
|
| 141 |
+
fig.add_shape(
|
| 142 |
+
type='line',
|
| 143 |
+
x0=x_min, x1=x_max,
|
| 144 |
+
y0=0.25, y1=0.25,
|
| 145 |
+
line=dict(
|
| 146 |
+
color='red',
|
| 147 |
+
width=2,
|
| 148 |
+
dash='dash'
|
| 149 |
+
)
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
return fig
|