Spaces:
Runtime error
Runtime error
Corey Morris
commited on
Commit
·
843a5ef
1
Parent(s):
03ade34
Refactoring. Moved ResultDataProcessor class to a separate file to make it easier to use with experimentation in a jupyter notebook
Browse files- app.py +4 -72
- result_data_processor.py +68 -0
app.py
CHANGED
|
@@ -1,73 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
import os
|
| 4 |
-
import fnmatch
|
| 5 |
-
import json
|
| 6 |
import plotly.express as px
|
| 7 |
-
|
| 8 |
-
class ResultDataProcessor:
|
| 9 |
-
def __init__(self):
|
| 10 |
-
self.data = self.process_data()
|
| 11 |
-
|
| 12 |
-
def process_data(self):
|
| 13 |
-
dataframes = []
|
| 14 |
-
|
| 15 |
-
def find_files(directory, pattern):
|
| 16 |
-
for root, dirs, files in os.walk(directory):
|
| 17 |
-
for basename in files:
|
| 18 |
-
if fnmatch.fnmatch(basename, pattern):
|
| 19 |
-
filename = os.path.join(root, basename)
|
| 20 |
-
yield filename
|
| 21 |
-
|
| 22 |
-
for filename in find_files('results', 'results*.json'):
|
| 23 |
-
model_name = filename.split('/')[2]
|
| 24 |
-
with open(filename) as f:
|
| 25 |
-
data = json.load(f)
|
| 26 |
-
df = pd.DataFrame(data['results']).T
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# data cleanup
|
| 30 |
-
df = df.rename(columns={'acc': model_name})
|
| 31 |
-
# Replace 'hendrycksTest-' with a more descriptive column name
|
| 32 |
-
df.index = df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
|
| 33 |
-
df.index = df.index.str.replace('harness\|', '', regex=True)
|
| 34 |
-
# remove |5 from the index
|
| 35 |
-
df.index = df.index.str.replace('\|5', '', regex=True)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
dataframes.append(df[[model_name]])
|
| 39 |
-
|
| 40 |
-
data = pd.concat(dataframes, axis=1)
|
| 41 |
-
|
| 42 |
-
data = data.transpose()
|
| 43 |
-
data['Model Name'] = data.index
|
| 44 |
-
cols = data.columns.tolist()
|
| 45 |
-
cols = cols[-1:] + cols[:-1]
|
| 46 |
-
data = data[cols]
|
| 47 |
-
|
| 48 |
-
# remove the Model Name column
|
| 49 |
-
data = data.drop(['Model Name'], axis=1)
|
| 50 |
-
|
| 51 |
-
# remove the all column
|
| 52 |
-
data = data.drop(['all'], axis=1)
|
| 53 |
-
|
| 54 |
-
# remove the truthfulqa:mc|0 column
|
| 55 |
-
data = data.drop(['truthfulqa:mc|0'], axis=1)
|
| 56 |
-
|
| 57 |
-
# create a new column that averages the results from each of the columns with a name that start with MMLU
|
| 58 |
-
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
|
| 59 |
-
|
| 60 |
-
# move the MMLU_average column to the third column in the dataframe
|
| 61 |
-
cols = data.columns.tolist()
|
| 62 |
-
cols = cols[:2] + cols[-1:] + cols[2:-1]
|
| 63 |
-
data = data[cols]
|
| 64 |
-
|
| 65 |
-
return data
|
| 66 |
-
|
| 67 |
-
# filter data based on the index
|
| 68 |
-
def get_data(self, selected_models):
|
| 69 |
-
filtered_data = self.data[self.data.index.isin(selected_models)]
|
| 70 |
-
return filtered_data
|
| 71 |
|
| 72 |
data_provider = ResultDataProcessor()
|
| 73 |
|
|
@@ -131,10 +65,6 @@ def create_plot(df, arc_column, moral_column, models=None):
|
|
| 131 |
|
| 132 |
return fig
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
st.header('Overall benchmark comparison')
|
| 137 |
-
|
| 138 |
st.header('Custom scatter plots')
|
| 139 |
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
|
| 140 |
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=1)
|
|
@@ -145,6 +75,8 @@ if selected_x_column != selected_y_column: # Avoid creating a plot with the s
|
|
| 145 |
else:
|
| 146 |
st.write("Please select different columns for the x and y axes.")
|
| 147 |
|
|
|
|
|
|
|
| 148 |
fig = create_plot(filtered_data, 'arc:challenge|25', 'hellaswag|10')
|
| 149 |
st.plotly_chart(fig)
|
| 150 |
|
|
@@ -159,7 +91,7 @@ top_50 = filtered_data.nlargest(50, 'MMLU_average')
|
|
| 159 |
fig = create_plot(top_50, 'arc:challenge|25', 'MMLU_average')
|
| 160 |
st.plotly_chart(fig)
|
| 161 |
|
| 162 |
-
st.header('Moral
|
| 163 |
|
| 164 |
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_moral_scenarios')
|
| 165 |
st.plotly_chart(fig)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
| 3 |
import plotly.express as px
|
| 4 |
+
from result_data_processor import ResultDataProcessor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
data_provider = ResultDataProcessor()
|
| 7 |
|
|
|
|
| 65 |
|
| 66 |
return fig
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
st.header('Custom scatter plots')
|
| 69 |
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
|
| 70 |
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=1)
|
|
|
|
| 75 |
else:
|
| 76 |
st.write("Please select different columns for the x and y axes.")
|
| 77 |
|
| 78 |
+
st.header('Overall evaluation comparisons')
|
| 79 |
+
|
| 80 |
fig = create_plot(filtered_data, 'arc:challenge|25', 'hellaswag|10')
|
| 81 |
st.plotly_chart(fig)
|
| 82 |
|
|
|
|
| 91 |
fig = create_plot(top_50, 'arc:challenge|25', 'MMLU_average')
|
| 92 |
st.plotly_chart(fig)
|
| 93 |
|
| 94 |
+
st.header('Moral Reasoning')
|
| 95 |
|
| 96 |
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_moral_scenarios')
|
| 97 |
st.plotly_chart(fig)
|
result_data_processor.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import os
|
| 3 |
+
import fnmatch
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
class ResultDataProcessor:
|
| 7 |
+
def __init__(self):
|
| 8 |
+
self.data = self.process_data()
|
| 9 |
+
|
| 10 |
+
def process_data(self):
|
| 11 |
+
dataframes = []
|
| 12 |
+
|
| 13 |
+
def find_files(directory, pattern):
|
| 14 |
+
for root, dirs, files in os.walk(directory):
|
| 15 |
+
for basename in files:
|
| 16 |
+
if fnmatch.fnmatch(basename, pattern):
|
| 17 |
+
filename = os.path.join(root, basename)
|
| 18 |
+
yield filename
|
| 19 |
+
|
| 20 |
+
for filename in find_files('results', 'results*.json'):
|
| 21 |
+
model_name = filename.split('/')[2]
|
| 22 |
+
with open(filename) as f:
|
| 23 |
+
data = json.load(f)
|
| 24 |
+
df = pd.DataFrame(data['results']).T
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# data cleanup
|
| 28 |
+
df = df.rename(columns={'acc': model_name})
|
| 29 |
+
# Replace 'hendrycksTest-' with a more descriptive column name
|
| 30 |
+
df.index = df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
|
| 31 |
+
df.index = df.index.str.replace('harness\|', '', regex=True)
|
| 32 |
+
# remove |5 from the index
|
| 33 |
+
df.index = df.index.str.replace('\|5', '', regex=True)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
dataframes.append(df[[model_name]])
|
| 37 |
+
|
| 38 |
+
data = pd.concat(dataframes, axis=1)
|
| 39 |
+
|
| 40 |
+
data = data.transpose()
|
| 41 |
+
data['Model Name'] = data.index
|
| 42 |
+
cols = data.columns.tolist()
|
| 43 |
+
cols = cols[-1:] + cols[:-1]
|
| 44 |
+
data = data[cols]
|
| 45 |
+
|
| 46 |
+
# remove the Model Name column
|
| 47 |
+
data = data.drop(['Model Name'], axis=1)
|
| 48 |
+
|
| 49 |
+
# remove the all column
|
| 50 |
+
data = data.drop(['all'], axis=1)
|
| 51 |
+
|
| 52 |
+
# remove the truthfulqa:mc|0 column
|
| 53 |
+
data = data.drop(['truthfulqa:mc|0'], axis=1)
|
| 54 |
+
|
| 55 |
+
# create a new column that averages the results from each of the columns with a name that start with MMLU
|
| 56 |
+
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
|
| 57 |
+
|
| 58 |
+
# move the MMLU_average column to the third column in the dataframe
|
| 59 |
+
cols = data.columns.tolist()
|
| 60 |
+
cols = cols[:2] + cols[-1:] + cols[2:-1]
|
| 61 |
+
data = data[cols]
|
| 62 |
+
|
| 63 |
+
return data
|
| 64 |
+
|
| 65 |
+
# filter data based on the index
|
| 66 |
+
def get_data(self, selected_models):
|
| 67 |
+
filtered_data = self.data[self.data.index.isin(selected_models)]
|
| 68 |
+
return filtered_data
|