import gradio as gr import os import torch from huggingface_hub import InferenceClient from huggingface_hub import login from transformers import AutoModelForCausalLM, AutoTokenizer hf_token = os.getenv("TEST") device = torch.device("cpu") # Force CPU usage print(device) if hf_token: login(hf_token) else: print("Erreur : Aucun token Hugging Face trouvé. Ajoute 'TOKEN' dans les secrets du Space.") # Load the Llama 2 model (Choose an appropriate model: 7B, 13B, or 70B) MODEL_NAME = "deepseek-ai/deepseek-llm-7b-chat" # Change this if needed #"" # Load tokenizer and model (Ensure enough VRAM for large models) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="cpu", use_auth_token=True) #Defe def chat_with_Deepseek(prompt, history=[]): """Generate response using deepseek """ inputs = tokenizer(prompt, return_tensors="pt").to("cpu") output = model.generate(**inputs, max_length=200) response = tokenizer.decode(output[0], skip_special_tokens=True) return response # Create Gradio UI interface = gr.ChatInterface(fn=chat_with_Deepseek, title="Deepseek llm 7b chat") # Launch in Hugging Face Spaces if __name__ == "__main__": interface.launch()