File size: 7,442 Bytes
cf7f9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
import os
from typing_extensions import Literal

class SimpleAdapter(nn.Module):
    def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1):
        super(SimpleAdapter, self).__init__()

        # Pixel Unshuffle: reduce spatial dimensions by a factor of 8
        self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8)

        # Convolution: reduce spatial dimensions by a factor
        #  of 2 (without overlap)
        self.conv = nn.Conv2d(in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0)

        # Residual blocks for feature extraction
        self.residual_blocks = nn.Sequential(
            *[ResidualBlock(out_dim) for _ in range(num_residual_blocks)]
        )

    def forward(self, x):
        # Reshape to merge the frame dimension into batch
        bs, c, f, h, w = x.size()
        x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w)

        # Pixel Unshuffle operation
        x_unshuffled = self.pixel_unshuffle(x)

        # Convolution operation
        x_conv = self.conv(x_unshuffled)

        # Feature extraction with residual blocks
        out = self.residual_blocks(x_conv)

        # Reshape to restore original bf dimension
        out = out.view(bs, f, out.size(1), out.size(2), out.size(3))

        # Permute dimensions to reorder (if needed), e.g., swap channels and feature frames
        out = out.permute(0, 2, 1, 3, 4)

        return out
    
    def process_camera_coordinates(
        self,
        direction: Literal["Left", "Right", "Up", "Down", "LeftUp", "LeftDown", "RightUp", "RightDown"],
        length: int,
        height: int,
        width: int,
        speed: float = 1/54,
        origin=(0, 0.532139961, 0.946026558, 0.5, 0.5, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)
    ):
        if origin is None:
            origin = (0, 0.532139961, 0.946026558, 0.5, 0.5, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)
        coordinates = generate_camera_coordinates(direction, length, speed, origin)
        plucker_embedding = process_pose_file(coordinates, width, height)
        return plucker_embedding
        
    

class ResidualBlock(nn.Module):
    def __init__(self, dim):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, padding=1)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, padding=1)

    def forward(self, x):
        residual = x
        out = self.relu(self.conv1(x))
        out = self.conv2(out)
        out += residual
        return out
    
class Camera(object):
    """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
    """
    def __init__(self, entry):
        fx, fy, cx, cy = entry[1:5]
        self.fx = fx
        self.fy = fy
        self.cx = cx
        self.cy = cy
        w2c_mat = np.array(entry[7:]).reshape(3, 4)
        w2c_mat_4x4 = np.eye(4)
        w2c_mat_4x4[:3, :] = w2c_mat
        self.w2c_mat = w2c_mat_4x4
        self.c2w_mat = np.linalg.inv(w2c_mat_4x4)

def get_relative_pose(cam_params):
    """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
    """
    abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
    abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
    cam_to_origin = 0
    target_cam_c2w = np.array([
        [1, 0, 0, 0],
        [0, 1, 0, -cam_to_origin],
        [0, 0, 1, 0],
        [0, 0, 0, 1]
    ])
    abs2rel = target_cam_c2w @ abs_w2cs[0]
    ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
    ret_poses = np.array(ret_poses, dtype=np.float32)
    return ret_poses

def custom_meshgrid(*args):
    # torch>=2.0.0 only
    return torch.meshgrid(*args, indexing='ij')


def ray_condition(K, c2w, H, W, device):
    """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py
    """
    # c2w: B, V, 4, 4
    # K: B, V, 4

    B = K.shape[0]

    j, i = custom_meshgrid(
        torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
        torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
    )
    i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5  # [B, HxW]
    j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5  # [B, HxW]

    fx, fy, cx, cy = K.chunk(4, dim=-1)  # B,V, 1

    zs = torch.ones_like(i)  # [B, HxW]
    xs = (i - cx) / fx * zs
    ys = (j - cy) / fy * zs
    zs = zs.expand_as(ys)

    directions = torch.stack((xs, ys, zs), dim=-1)  # B, V, HW, 3
    directions = directions / directions.norm(dim=-1, keepdim=True)  # B, V, HW, 3

    rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2)  # B, V, 3, HW
    rays_o = c2w[..., :3, 3]  # B, V, 3
    rays_o = rays_o[:, :, None].expand_as(rays_d)  # B, V, 3, HW
    # c2w @ dirctions
    rays_dxo = torch.linalg.cross(rays_o, rays_d)
    plucker = torch.cat([rays_dxo, rays_d], dim=-1)
    plucker = plucker.reshape(B, c2w.shape[1], H, W, 6)  # B, V, H, W, 6
    # plucker = plucker.permute(0, 1, 4, 2, 3)
    return plucker


def process_pose_file(cam_params, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu', return_poses=False):
    if return_poses:
        return cam_params
    else:
        cam_params = [Camera(cam_param) for cam_param in cam_params]

        sample_wh_ratio = width / height
        pose_wh_ratio = original_pose_width / original_pose_height  # Assuming placeholder ratios, change as needed

        if pose_wh_ratio > sample_wh_ratio:
            resized_ori_w = height * pose_wh_ratio
            for cam_param in cam_params:
                cam_param.fx = resized_ori_w * cam_param.fx / width
        else:
            resized_ori_h = width / pose_wh_ratio
            for cam_param in cam_params:
                cam_param.fy = resized_ori_h * cam_param.fy / height

        intrinsic = np.asarray([[cam_param.fx * width,
                                cam_param.fy * height,
                                cam_param.cx * width,
                                cam_param.cy * height]
                                for cam_param in cam_params], dtype=np.float32)

        K = torch.as_tensor(intrinsic)[None]  # [1, 1, 4]
        c2ws = get_relative_pose(cam_params)  # Assuming this function is defined elsewhere
        c2ws = torch.as_tensor(c2ws)[None]  # [1, n_frame, 4, 4]
        plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous()  # V, 6, H, W
        plucker_embedding = plucker_embedding[None]
        plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
        return plucker_embedding



def generate_camera_coordinates(
    direction: Literal["Left", "Right", "Up", "Down", "LeftUp", "LeftDown", "RightUp", "RightDown"],
    length: int,
    speed: float = 1/54,
    origin=(0, 0.532139961, 0.946026558, 0.5, 0.5, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)
):
    coordinates = [list(origin)]
    while len(coordinates) < length:
        coor = coordinates[-1].copy()
        if "Left" in direction:
            coor[9] += speed
        if "Right" in direction:
            coor[9] -= speed
        if "Up" in direction:
            coor[13] += speed
        if "Down" in direction:
            coor[13] -= speed
        coordinates.append(coor)
    return coordinates