File size: 9,774 Bytes
cf7f9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch, copy
from typing import Union
from ..models.utils import init_weights_on_device


def cast_to(weight, dtype, device):
    r = torch.empty_like(weight, dtype=dtype, device=device)
    r.copy_(weight)
    return r


class AutoTorchModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        
    def check_free_vram(self):
        gpu_mem_state = torch.cuda.mem_get_info(self.computation_device)
        used_memory = (gpu_mem_state[1] - gpu_mem_state[0]) / (1024 ** 3)
        return used_memory < self.vram_limit

    def offload(self):
        if self.state != 0:
            self.to(dtype=self.offload_dtype, device=self.offload_device)
            self.state = 0

    def onload(self):
        if self.state != 1:
            self.to(dtype=self.onload_dtype, device=self.onload_device)
            self.state = 1
            
    def keep(self):
        if self.state != 2:
            self.to(dtype=self.computation_dtype, device=self.computation_device)
            self.state = 2


class AutoWrappedModule(AutoTorchModule):
    def __init__(self, module: torch.nn.Module, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, **kwargs):
        super().__init__()
        self.module = module.to(dtype=offload_dtype, device=offload_device)
        self.offload_dtype = offload_dtype
        self.offload_device = offload_device
        self.onload_dtype = onload_dtype
        self.onload_device = onload_device
        self.computation_dtype = computation_dtype
        self.computation_device = computation_device
        self.vram_limit = vram_limit
        self.state = 0

    def forward(self, *args, **kwargs):
        if self.state == 2:
            module = self.module
        else:
            if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
                module = self.module
            elif self.vram_limit is not None and self.check_free_vram():
                self.keep()
                module = self.module
            else:
                module = copy.deepcopy(self.module).to(dtype=self.computation_dtype, device=self.computation_device)
        return module(*args, **kwargs)
    

class WanAutoCastLayerNorm(torch.nn.LayerNorm, AutoTorchModule):
    def __init__(self, module: torch.nn.LayerNorm, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, **kwargs):
        with init_weights_on_device(device=torch.device("meta")):
            super().__init__(module.normalized_shape, eps=module.eps, elementwise_affine=module.elementwise_affine, bias=module.bias is not None, dtype=offload_dtype, device=offload_device)
        self.weight = module.weight
        self.bias = module.bias
        self.offload_dtype = offload_dtype
        self.offload_device = offload_device
        self.onload_dtype = onload_dtype
        self.onload_device = onload_device
        self.computation_dtype = computation_dtype
        self.computation_device = computation_device
        self.vram_limit = vram_limit
        self.state = 0

    def forward(self, x, *args, **kwargs):
        if self.state == 2:
            weight, bias = self.weight, self.bias
        else:
            if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
                weight, bias = self.weight, self.bias
            elif self.vram_limit is not None and self.check_free_vram():
                self.keep()
                weight, bias = self.weight, self.bias
            else:
                weight = None if self.weight is None else cast_to(self.weight, self.computation_dtype, self.computation_device)
                bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device)
        with torch.amp.autocast(device_type=x.device.type):
            x = torch.nn.functional.layer_norm(x.float(), self.normalized_shape, weight, bias, self.eps).type_as(x)
        return x
    

class AutoWrappedLinear(torch.nn.Linear, AutoTorchModule):
    def __init__(self, module: torch.nn.Linear, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, name="", **kwargs):
        with init_weights_on_device(device=torch.device("meta")):
            super().__init__(in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, dtype=offload_dtype, device=offload_device)
        self.weight = module.weight
        self.bias = module.bias
        self.offload_dtype = offload_dtype
        self.offload_device = offload_device
        self.onload_dtype = onload_dtype
        self.onload_device = onload_device
        self.computation_dtype = computation_dtype
        self.computation_device = computation_device
        self.vram_limit = vram_limit
        self.state = 0
        self.name = name
        self.lora_A_weights = []
        self.lora_B_weights = []
        self.lora_merger = None
        self.enable_fp8 = computation_dtype in [torch.float8_e4m3fn, torch.float8_e4m3fnuz]
        
    def fp8_linear(
        self,
        input: torch.Tensor,
        weight: torch.Tensor,
        bias: Union[torch.Tensor, None] = None):
        device = input.device
        origin_dtype = input.dtype
        origin_shape = input.shape
        input = input.reshape(-1, origin_shape[-1])

        x_max = torch.max(torch.abs(input), dim=-1, keepdim=True).values
        fp8_max = 448.0
        # For float8_e4m3fnuz, the maximum representable value is half of that of e4m3fn.
        # To avoid overflow and ensure numerical compatibility during FP8 computation,
        # we scale down the input by 2.0 in advance.
        # This scaling will be compensated later during the final result scaling.
        if self.computation_dtype == torch.float8_e4m3fnuz:
            fp8_max = fp8_max / 2.0
        scale_a = torch.clamp(x_max / fp8_max, min=1.0).float().to(device=device)
        scale_b = torch.ones((weight.shape[0], 1)).to(device=device)
        input = input / (scale_a + 1e-8)
        input = input.to(self.computation_dtype)
        weight = weight.to(self.computation_dtype)
        bias = bias.to(torch.bfloat16)

        result = torch._scaled_mm(
            input,
            weight.T,
            scale_a=scale_a,
            scale_b=scale_b.T,
            bias=bias,
            out_dtype=origin_dtype,
        )
        new_shape = origin_shape[:-1] + result.shape[-1:]
        result = result.reshape(new_shape)
        return result

    def forward(self, x, *args, **kwargs):
        # VRAM management
        if self.state == 2:
            weight, bias = self.weight, self.bias
        else:
            if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device:
                weight, bias = self.weight, self.bias
            elif self.vram_limit is not None and self.check_free_vram():
                self.keep()
                weight, bias = self.weight, self.bias
            else:
                weight = cast_to(self.weight, self.computation_dtype, self.computation_device)
                bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device)
        
        # Linear forward
        if self.enable_fp8:
            out = self.fp8_linear(x, weight, bias)
        else:
            out = torch.nn.functional.linear(x, weight, bias)
        
        # LoRA
        if len(self.lora_A_weights) == 0:
            # No LoRA
            return out
        elif self.lora_merger is None:
            # Native LoRA inference
            for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights):
                out = out + x @ lora_A.T @ lora_B.T
        else:
            # LoRA fusion
            lora_output = []
            for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights):
                lora_output.append(x @ lora_A.T @ lora_B.T)
            lora_output = torch.stack(lora_output)
            out = self.lora_merger(out, lora_output)
        return out


def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0, vram_limit=None, name_prefix=""):
    for name, module in model.named_children():
        layer_name = name if name_prefix == "" else name_prefix + "." + name
        for source_module, target_module in module_map.items():
            if isinstance(module, source_module):
                num_param = sum(p.numel() for p in module.parameters())
                if max_num_param is not None and total_num_param + num_param > max_num_param:
                    module_config_ = overflow_module_config
                else:
                    module_config_ = module_config
                module_ = target_module(module, **module_config_, vram_limit=vram_limit, name=layer_name)
                setattr(model, name, module_)
                total_num_param += num_param
                break
        else:
            total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param, vram_limit=vram_limit, name_prefix=layer_name)
    return total_num_param


def enable_vram_management(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, vram_limit=None):
    enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0, vram_limit=vram_limit)
    model.vram_management_enabled = True