DKT / app.py
shaocong's picture
save gpu
03adfb4
raw
history blame
14.6 kB
import os
import gradio as gr
import numpy as np
import torch
from PIL import Image
from loguru import logger
from tqdm import tqdm
from tools.common_utils import save_video
from dkt.pipelines.pipeline import DKTPipeline, ModelConfig
import cv2
import copy
import trimesh
from os.path import join
from tools.depth2pcd import depth2pcd
# from moge.model.v2 import MoGeModel
from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
import glob
import datetime
import shutil
import tempfile
import spaces
#* better for bg: logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
PROMPT = 'depth'
NEGATIVE_PROMPT = ''
height = 480
width = 832
window_size = 21
DKT_PIPELINE = DKTPipeline()
example_inputs = [
["examples/1.mp4", "1.3B", 5, 3],
["examples/33.mp4", "1.3B", 5, 3],
["examples/7.mp4", "1.3B", 5, 3],
["examples/8.mp4", "1.3B", 5, 3],
["examples/9.mp4", "1.3B", 5, 3],
# ["examples/178db6e89ab682bfc612a3290fec58dd.mp4", "1.3B", 5, 3],
["examples/36.mp4", "1.3B", 5, 3],
["examples/39.mp4", "1.3B", 5, 3],
# ["examples/b1f1fa44f414d7731cd7d77751093c44.mp4", "1.3B", 5, 3],
["examples/10.mp4", "1.3B", 5, 3],
["examples/30.mp4", "1.3B", 5, 3],
["examples/3.mp4", "1.3B", 5, 3],
["examples/32.mp4", "1.3B", 5, 3],
["examples/35.mp4", "1.3B", 5, 3],
["examples/40.mp4", "1.3B", 5, 3],
["examples/2.mp4", "1.3B", 5, 3],
# ["examples/31.mp4", "1.3B", 5, 3],
# ["examples/DJI_20250912164311_0007_D.mp4", "1.3B", 5, 3],
# ["examples/DJI_20250912163642_0003_D.mp4", "1.3B", 5, 3],
# ["examples/5.mp4", "1.3B", 5, 3],
# ["examples/1b0daeb776471c7389b36cee53049417.mp4", "1.3B", 5, 3],
# ["examples/8a6dfb8cfe80634f4f77ae9aa830d075.mp4", "1.3B", 5, 3],
# ["examples/69230f105ad8740e08d743a8ee11c651.mp4", "1.3B", 5, 3],
# ["examples/b68045aa2128ab63d9c7518f8d62eafe.mp4", "1.3B", 5, 3],
]
def pmap_to_glb(point_map, valid_mask, frame) -> trimesh.Scene:
pts_3d = point_map[valid_mask] * np.array([-1, -1, 1])
pts_rgb = frame[valid_mask]
# Initialize a 3D scene
scene_3d = trimesh.Scene()
# Add point cloud data to the scene
point_cloud_data = trimesh.PointCloud(
vertices=pts_3d, colors=pts_rgb
)
scene_3d.add_geometry(point_cloud_data)
return scene_3d
def create_simple_glb_from_pointcloud(points, colors, glb_filename):
try:
if len(points) == 0:
logger.warning(f"No valid points to create GLB for {glb_filename}")
return False
if colors is not None:
# logger.info(f"Adding colors to GLB: shape={colors.shape}, range=[{colors.min():.3f}, {colors.max():.3f}]")
pts_rgb = colors
else:
logger.info("No colors provided, adding default white colors")
pts_rgb = np.ones((len(points), 3))
valid_mask = np.ones(len(points), dtype=bool)
scene_3d = pmap_to_glb(points, valid_mask, pts_rgb)
scene_3d.export(glb_filename)
# logger.info(f"Saved GLB file using trimesh: {glb_filename}")
return True
except Exception as e:
logger.error(f"Error creating GLB from pointcloud using trimesh: {str(e)}")
return False
def process_video(
video_file,
model_size,
num_inference_steps,
overlap
):
global height
global width
global window_size
global DKT_PIPELINE
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
prediction_result = DKT_PIPELINE(video_file, prompt=PROMPT, \
negative_prompt=NEGATIVE_PROMPT,\
height=height,width=width,num_inference_steps=num_inference_steps,\
overlap=overlap, return_rgb=True)
frame_length = len(prediction_result['rgb_frames'])
vis_pc_num = 4
indices = np.linspace(0, frame_length-1, vis_pc_num)
indices = np.round(indices).astype(np.int32)
pcds = DKT_PIPELINE.prediction2pc_v2(prediction_result['depth_map'], prediction_result['rgb_frames'], indices, return_pcd=True)
glb_files = []
for idx, pcd in enumerate(pcds):
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors) if pcd.has_colors() else None
points[:, 2] = -points[:, 2]
points[:, 0] = -points[:, 0]
glb_filename = os.path.join(cur_save_dir, f'{timestamp}_{idx:02d}.glb')
success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
if not success:
logger.warning(f"Failed to save GLB file: {glb_filename}")
glb_files.append(glb_filename)
#* save depth predictions video
output_filename = f"output_{timestamp}.mp4"
output_path = os.path.join(cur_save_dir, output_filename)
cap = cv2.VideoCapture(video_file)
input_fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
save_video(prediction_result['colored_depth_map'], output_path, fps=input_fps, quality=8)
return output_path, glb_files
#* gradio creation and initialization
css = """
#video-display-container {
max-height: 100vh;
}
#video-display-input {
max-height: 80vh;
}
#video-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
.title {
text-align: center;
}
.description {
text-align: center;
}
.gradio-examples {
max-height: 400px;
overflow-y: auto;
}
.gradio-examples .examples-container {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 10px;
padding: 10px;
}
.gradio-container .gradio-examples .pagination,
.gradio-container .gradio-examples .pagination button,
div[data-testid="examples"] .pagination,
div[data-testid="examples"] .pagination button {
font-size: 28px !important;
font-weight: bold !important;
padding: 15px 20px !important;
min-width: 60px !important;
height: 60px !important;
border-radius: 10px !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
border: none !important;
cursor: pointer !important;
margin: 8px !important;
display: inline-block !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
transition: all 0.3s ease !important;
}
div[data-testid="examples"] .pagination button:not(.active),
.gradio-container .gradio-examples .pagination button:not(.active) {
font-size: 32px !important;
font-weight: bold !important;
padding: 15px 20px !important;
min-width: 60px !important;
height: 60px !important;
background: linear-gradient(135deg, #8a9cf0 0%, #9a6bb2 100%) !important;
opacity: 0.8 !important;
}
div[data-testid="examples"] .pagination button:hover,
.gradio-container .gradio-examples .pagination button:hover {
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%) !important;
transform: translateY(-2px) !important;
box-shadow: 0 6px 12px rgba(0,0,0,0.3) !important;
opacity: 1 !important;
}
div[data-testid="examples"] .pagination button.active,
.gradio-container .gradio-examples .pagination button.active {
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%) !important;
box-shadow: 0 4px 8px rgba(17,153,142,0.4) !important;
opacity: 1 !important;
}
button[class*="pagination"],
button[class*="page"] {
font-size: 28px !important;
font-weight: bold !important;
padding: 15px 20px !important;
min-width: 60px !important;
height: 60px !important;
border-radius: 10px !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
border: none !important;
cursor: pointer !important;
margin: 8px !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
transition: all 0.3s ease !important;
}
"""
head_html = """
<link rel="icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<link rel="shortcut icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<link rel="icon" type="image/png" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
"""
# description = """Official demo for **DKT **."""
# with gr.Blocks(css=css, title="DKT - Diffusion Knows Transparency", favicon_path="favicon.ico") as demo:
with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
# gr.Markdown(title, elem_classes=["title"])
"""
<a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2406.16864" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
"""
gr.Markdown(
"""
# Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation
<p align="center">
<a title="Github" href="https://github.com/Daniellli/DKT" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Daniellli/DKT?style=social" alt="badge-github-stars">
</a>
"""
)
# gr.Markdown(description, elem_classes=["description"])
# gr.Markdown("### Video Processing Demo", elem_classes=["description"])
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video", elem_id='video-display-input')
model_size = gr.Radio(
# choices=["1.3B", "14B"],
choices=["1.3B"],
value="1.3B",
label="Model Size"
)
with gr.Accordion("Advanced Parameters", open=False):
num_inference_steps = gr.Slider(
minimum=1, maximum=50, value=5, step=1,
label="Number of Inference Steps"
)
overlap = gr.Slider(
minimum=1, maximum=20, value=3, step=1,
label="Overlap"
)
submit = gr.Button(value="Compute Depth", variant="primary")
with gr.Column():
output_video = gr.Video(
label="Depth Outputs",
elem_id='video-display-output',
autoplay=True
)
vis_video = gr.Video(
label="Visualization Video",
visible=False,
autoplay=True
)
with gr.Row():
gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
with gr.Row(equal_height=True):
with gr.Column(scale=1):
output_point_map0 = gr.Model3D(
label="Point Cloud Key Frame 1",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False,
)
with gr.Column(scale=1):
output_point_map1 = gr.Model3D(
label="Point Cloud Key Frame 2",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
output_point_map2 = gr.Model3D(
label="Point Cloud Key Frame 3",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
with gr.Column(scale=1):
output_point_map3 = gr.Model3D(
label="Point Cloud Key Frame 4",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
def on_submit(video_file, model_size, num_inference_steps, overlap):
logger.info('on_submit is calling')
if video_file is None:
return None, None, None, None, None, None, "Please upload a video file"
try:
output_path, glb_files = process_video(
video_file, model_size, num_inference_steps, overlap
)
if output_path is None:
return None, None, None, None, None, None, glb_files
model3d_outputs = [None] * 4
if glb_files:
for i, glb_file in enumerate(glb_files[:4]):
if os.path.exists(glb_file):
model3d_outputs[i] = glb_file
return output_path, None, *model3d_outputs
except Exception as e:
logger.error(e)
return None, None, None, None, None, None
submit.click(
on_submit,
inputs=[
input_video, model_size, num_inference_steps, overlap
],
outputs=[
output_video, vis_video, output_point_map0, output_point_map1, output_point_map2, output_point_map3
]
)
logger.info(f'there are {len(example_inputs)} demo files')
print(f'there are {len(example_inputs)} demo files')
examples = gr.Examples(
examples=example_inputs,
inputs=[input_video, model_size, num_inference_steps, overlap],
outputs=[
output_video, vis_video,
output_point_map0, output_point_map1, output_point_map2, output_point_map3
],
fn=on_submit,
examples_per_page=12,
cache_examples=False
)
if __name__ == '__main__':
#* main code, model and moge model initialization
demo.queue().launch(share = True)