DKT / app.py
Daniellesry's picture
a
aa54deb
raw
history blame
23.7 kB
import os
import gradio as gr
import numpy as np
import torch
from PIL import Image
from loguru import logger
from tqdm import tqdm
from tools.common_utils import save_video
from dkt.pipelines.wan_video_new import WanVideoPipeline, ModelConfig
try:
import gradio_client.utils as _gc_utils
if hasattr(_gc_utils, "get_type"):
_orig_get_type = _gc_utils.get_type
def _get_type_safe(schema):
if not isinstance(schema, dict):
return "Any"
return _orig_get_type(schema)
_gc_utils.get_type = _get_type_safe
except Exception:
pass
# Additional guard: handle boolean JSON Schemas and parsing errors
try:
import gradio_client.utils as _gc_utils
# Wrap the internal _json_schema_to_python_type if present
if hasattr(_gc_utils, "_json_schema_to_python_type"):
_orig_internal = _gc_utils._json_schema_to_python_type
def _json_schema_to_python_type_safe(schema, defs=None):
if isinstance(schema, bool):
return "Any"
try:
return _orig_internal(schema, defs)
except Exception:
return "Any"
_gc_utils._json_schema_to_python_type = _json_schema_to_python_type_safe
# Also wrap the public json_schema_to_python_type to be extra defensive
if hasattr(_gc_utils, "json_schema_to_python_type"):
_orig_public = _gc_utils.json_schema_to_python_type
def json_schema_to_python_type_safe(schema):
try:
return _orig_public(schema)
except Exception:
return "Any"
_gc_utils.json_schema_to_python_type = json_schema_to_python_type_safe
except Exception:
pass
import cv2
import copy
import trimesh
from gradio_litmodel3d import LitModel3D
from os.path import join
from tools.depth2pcd import depth2pcd
try:
from moge.model.v2 import MoGeModel
except:
os.system('pip install git+https://github.com/microsoft/MoGe.git -i https://pypi.org/simple/ --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host files.pythonhosted.org')
from moge.model.v2 import MoGeModel
from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
import glob
import datetime
import shutil
import tempfile
import spaces
PIPE_1_3B = None
MOGE_MODULE = None
#* better for bg: logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
PROMPT = 'depth'
NEGATIVE_PROMPT = ''
example_inputs = [
["examples/1.mp4","1.3B",5,3],
["examples/1b0daeb776471c7389b36cee53049417.mp4","1.3B",5,3],
["examples/DJI_20250912163642_0003_D.mp4","1.3B",5,3],
]
height = 480
width = 832
window_size = 21
def resize_frame(frame, height, width):
frame = np.array(frame)
frame = torch.from_numpy(frame).permute(2, 0, 1).unsqueeze(0).float() / 255.0
frame = torch.nn.functional.interpolate(frame, (height, width), mode="bicubic", align_corners=False, antialias=True)
frame = (frame.squeeze(0).permute(1, 2, 0).clamp(0, 1) * 255).byte().numpy()
frame = Image.fromarray(frame)
return frame
def pmap_to_glb(point_map, valid_mask, frame) -> trimesh.Scene:
pts_3d = point_map[valid_mask] * np.array([-1, -1, 1])
pts_rgb = frame[valid_mask]
# Initialize a 3D scene
scene_3d = trimesh.Scene()
# Add point cloud data to the scene
point_cloud_data = trimesh.PointCloud(
vertices=pts_3d, colors=pts_rgb
)
scene_3d.add_geometry(point_cloud_data)
return scene_3d
def create_simple_glb_from_pointcloud(points, colors, glb_filename):
try:
if len(points) == 0:
logger.warning(f"No valid points to create GLB for {glb_filename}")
return False
if colors is not None:
# logger.info(f"Adding colors to GLB: shape={colors.shape}, range=[{colors.min():.3f}, {colors.max():.3f}]")
pts_rgb = colors
else:
logger.info("No colors provided, adding default white colors")
pts_rgb = np.ones((len(points), 3))
valid_mask = np.ones(len(points), dtype=bool)
scene_3d = pmap_to_glb(points, valid_mask, pts_rgb)
scene_3d.export(glb_filename)
# logger.info(f"Saved GLB file using trimesh: {glb_filename}")
return True
except Exception as e:
logger.error(f"Error creating GLB from pointcloud using trimesh: {str(e)}")
return False
def extract_frames_from_video_file(video_path):
try:
cap = cv2.VideoCapture(video_path)
frames = []
fps = cap.get(cv2.CAP_PROP_FPS)
if fps <= 0:
fps = 15.0
while True:
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_rgb = Image.fromarray(frame_rgb)
frames.append(frame_rgb)
cap.release()
return frames, fps
except Exception as e:
logger.error(f"Error extracting frames from {video_path}: {str(e)}")
return [], 15.0
def load_moge_model(device="cuda:0"):
global MOGE_MODULE
if MOGE_MODULE is not None:
return MOGE_MODULE
logger.info(f"Loading MoGe model on {device}...")
MOGE_MODULE = MoGeModel.from_pretrained('Ruicheng/moge-2-vitl-normal').to(device)
return MOGE_MODULE
def load_model_1_3b(device="cuda:0"):
global PIPE_1_3B
if PIPE_1_3B is not None:
return PIPE_1_3B
logger.info(f"Loading 1.3B model on {device}...")
pipe = WanVideoPipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device=device,
model_configs=[
ModelConfig(
model_id="PAI/Wan2.1-Fun-1.3B-Control",
origin_file_pattern="diffusion_pytorch_model*.safetensors",
offload_device="cpu",
),
ModelConfig(
model_id="PAI/Wan2.1-Fun-1.3B-Control",
origin_file_pattern="models_t5_umt5-xxl-enc-bf16.pth",
offload_device="cpu",
),
ModelConfig(
model_id="PAI/Wan2.1-Fun-1.3B-Control",
origin_file_pattern="Wan2.1_VAE.pth",
offload_device="cpu",
),
ModelConfig(
model_id="PAI/Wan2.1-Fun-1.3B-Control",
origin_file_pattern="models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
offload_device="cpu",
),
],
training_strategy="origin",
)
lora_config = ModelConfig(
model_id="Daniellesry/DKT-Depth-1-3B",
origin_file_pattern="dkt-1-3B.safetensors",
offload_device="cpu",
)
lora_config.download_if_necessary(use_usp=False)
pipe.load_lora(pipe.dit, lora_config.path, alpha=1.0)#todo is it work?
pipe.enable_vram_management()
PIPE_1_3B = pipe
return pipe
def get_model(model_size):
if model_size == "1.3B":
assert PIPE_1_3B is not None, "1.3B model not initialized"
return PIPE_1_3B
else:
raise ValueError(f"Unsupported model size: {model_size}")
@spaces.GPU
def process_video(
video_file,
model_size,
num_inference_steps,
overlap
):
print('process_video called')
try:
pipe = get_model(model_size)
if pipe is None:
return None, f"Model {model_size} not initialized. Please restart the application."
tmp_video_path = video_file
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# 使用临时目录存储所有文件
cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
original_filename = f"input_{timestamp}.mp4"
dst_path = os.path.join(cur_save_dir, original_filename)
shutil.copy2(tmp_video_path, dst_path)
origin_frames, input_fps = extract_frames_from_video_file(tmp_video_path)
if not origin_frames:
return None, "Failed to extract frames from video"
logger.info(f"Extracted {len(origin_frames)} frames from video")
original_width, original_height = origin_frames[0].size
ROTATE = False
if original_width < original_height:
ROTATE = True
origin_frames = [x.transpose(Image.ROTATE_90) for x in origin_frames]
tmp = original_width
original_width = original_height
original_height = tmp
frames = [resize_frame(frame, height, width) for frame in origin_frames]
frame_length = len(frames)
if (frame_length - 1) % 4 != 0:
new_len = ((frame_length - 1) // 4 + 1) * 4 + 1
frames = frames + [copy.deepcopy(frames[-1]) for _ in range(new_len - frame_length)]
control_video = frames
video, vae_outs = pipe(
prompt=PROMPT,
negative_prompt=NEGATIVE_PROMPT,
control_video=control_video,
height=height,
width=width,
num_frames=len(control_video),
seed=1,
tiled=False,
num_inference_steps=num_inference_steps,
sliding_window_size=window_size,
sliding_window_stride=window_size - overlap,
cfg_scale=1.0,
)
#* moge process
torch.cuda.empty_cache()
processed_video = video[:frame_length]
processed_video = [resize_frame(frame, original_height, original_width) for frame in processed_video]
if ROTATE:
processed_video = [x.transpose(Image.ROTATE_270) for x in processed_video]
origin_frames = [x.transpose(Image.ROTATE_270) for x in origin_frames]
output_filename = f"output_{timestamp}.mp4"
output_path = os.path.join(cur_save_dir, output_filename)
color_predictions = []
if PROMPT == 'depth':
prediced_depth_map_np = [np.array(item).astype(np.float32).mean(-1) for item in processed_video]
prediced_depth_map_np = np.stack(prediced_depth_map_np)
prediced_depth_map_np = prediced_depth_map_np/ 255.0
__min = prediced_depth_map_np.min()
__max = prediced_depth_map_np.max()
prediced_depth_map_np = (prediced_depth_map_np - __min) / (__max - __min)
color_predictions = [colorize_depth_map(item) for item in prediced_depth_map_np]
else:
color_predictions = processed_video
save_video(color_predictions, output_path, fps=input_fps, quality=5)
frame_num = len(origin_frames)
resize_W,resize_H = origin_frames[0].size
vis_pc_num = 4
indices = np.linspace(0, frame_num-1, vis_pc_num)
indices = np.round(indices).astype(np.int32)
pc_save_dir = os.path.join(cur_save_dir, 'pointclouds')
os.makedirs(pc_save_dir, exist_ok=True)
glb_files = []
moge_device = MOGE_MODULE.device if MOGE_MODULE is not None else torch.device("cuda:0")
for idx in tqdm(indices):
orgin_rgb_frame = origin_frames[idx]
predicted_depth = processed_video[idx]
# Read the input image and convert to tensor (3, H, W) with RGB values normalized to [0, 1]
input_image_np = np.array(orgin_rgb_frame) # Convert PIL Image to numpy array
input_image = torch.tensor(input_image_np / 255, dtype=torch.float32, device=moge_device).permute(2, 0, 1)
output = MOGE_MODULE.infer(input_image)
#* "dict_keys(['points', 'intrinsics', 'depth', 'mask', 'normal'])"
moge_intrinsics = output['intrinsics'].cpu().numpy()
moge_mask = output['mask'].cpu().numpy()
moge_depth = output['depth'].cpu().numpy()
predicted_depth = np.array(predicted_depth)
predicted_depth = predicted_depth.mean(-1) / 255.0
metric_depth = transfer_pred_disp2depth(predicted_depth, moge_depth, moge_mask)
moge_intrinsics[0, 0] *= resize_W
moge_intrinsics[1, 1] *= resize_H
moge_intrinsics[0, 2] *= resize_W
moge_intrinsics[1, 2] *= resize_H
# pcd = depth2pcd(metric_depth, moge_intrinsics, color=cv2.cvtColor(input_image_np, cv2.COLOR_BGR2RGB), input_mask=moge_mask, ret_pcd=True)
pcd = depth2pcd(metric_depth, moge_intrinsics, color=input_image_np, input_mask=moge_mask, ret_pcd=True)
# pcd.points = o3d.utility.Vector3dVector(np.asarray(pcd.points) * np.array([1, -1, -1], dtype=np.float32))
apply_filter = True
if apply_filter:
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=3.0)
pcd = pcd.select_by_index(ind)
#* save pcd: o3d.io.write_point_cloud(f'{pc_save_dir}/{timestamp}_{idx:02d}.ply', pcd)
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors) if pcd.has_colors() else None
glb_filename = os.path.join(pc_save_dir, f'{timestamp}_{idx:02d}.glb')
success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
if not success:
logger.warning(f"Failed to save GLB file: {glb_filename}")
glb_files.append(glb_filename)
return output_path, glb_files
except Exception as e:
logger.error(f"Error processing video: {str(e)}")
return None, f"Error: {str(e)}"
#* gradio creation and initialization
css = """
#video-display-container {
max-height: 100vh;
}
#video-display-input {
max-height: 80vh;
}
#video-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
.title {
text-align: center;
}
.description {
text-align: center;
}
.gradio-examples {
max-height: 400px;
overflow-y: auto;
}
.gradio-examples .examples-container {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 10px;
padding: 10px;
}
.gradio-container .gradio-examples .pagination,
.gradio-container .gradio-examples .pagination button,
div[data-testid="examples"] .pagination,
div[data-testid="examples"] .pagination button {
font-size: 28px !important;
font-weight: bold !important;
padding: 15px 20px !important;
min-width: 60px !important;
height: 60px !important;
border-radius: 10px !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
border: none !important;
cursor: pointer !important;
margin: 8px !important;
display: inline-block !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
transition: all 0.3s ease !important;
}
div[data-testid="examples"] .pagination button:not(.active),
.gradio-container .gradio-examples .pagination button:not(.active) {
font-size: 32px !important;
font-weight: bold !important;
padding: 15px 20px !important;
min-width: 60px !important;
height: 60px !important;
background: linear-gradient(135deg, #8a9cf0 0%, #9a6bb2 100%) !important;
opacity: 0.8 !important;
}
div[data-testid="examples"] .pagination button:hover,
.gradio-container .gradio-examples .pagination button:hover {
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%) !important;
transform: translateY(-2px) !important;
box-shadow: 0 6px 12px rgba(0,0,0,0.3) !important;
opacity: 1 !important;
}
div[data-testid="examples"] .pagination button.active,
.gradio-container .gradio-examples .pagination button.active {
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%) !important;
box-shadow: 0 4px 8px rgba(17,153,142,0.4) !important;
opacity: 1 !important;
}
button[class*="pagination"],
button[class*="page"] {
font-size: 28px !important;
font-weight: bold !important;
padding: 15px 20px !important;
min-width: 60px !important;
height: 60px !important;
border-radius: 10px !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
border: none !important;
cursor: pointer !important;
margin: 8px !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
transition: all 0.3s ease !important;
}
"""
head_html = """
<link rel="icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<link rel="shortcut icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<link rel="icon" type="image/png" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
"""
# description = """Official demo for **DKT **."""
# with gr.Blocks(css=css, title="DKT - Diffusion Knows Transparency", favicon_path="favicon.ico") as demo:
with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
# gr.Markdown(title, elem_classes=["title"])
"""
<a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2406.16864" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
"""
gr.Markdown(
"""
# Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation
<p align="center">
<a title="Github" href="https://github.com/Daniellli/DKT" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Daniellli/DKT?style=social" alt="badge-github-stars">
</a>
"""
)
# gr.Markdown(description, elem_classes=["description"])
# gr.Markdown("### Video Processing Demo", elem_classes=["description"])
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video", elem_id='video-display-input')
model_size = gr.Radio(
choices=["1.3B", "14B"],
value="1.3B",
label="Model Size"
)
with gr.Accordion("Advanced Parameters", open=False):
num_inference_steps = gr.Slider(
minimum=1, maximum=50, value=5, step=1,
label="Number of Inference Steps"
)
overlap = gr.Slider(
minimum=1, maximum=20, value=3, step=1,
label="Overlap"
)
submit = gr.Button(value="Compute Depth", variant="primary")
with gr.Column():
output_video = gr.Video(
label="Depth Outputs",
elem_id='video-display-output',
autoplay=True
)
vis_video = gr.Video(
label="Visualization Video",
visible=False,
autoplay=True
)
with gr.Row():
gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
with gr.Row(equal_height=True):
with gr.Column(scale=1):
output_point_map0 = LitModel3D(
label="Point Cloud Key Frame 1",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False,
# height=400,
)
with gr.Column(scale=1):
output_point_map1 = LitModel3D(
label="Point Cloud Key Frame 2",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
output_point_map2 = LitModel3D(
label="Point Cloud Key Frame 3",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
with gr.Column(scale=1):
output_point_map3 = LitModel3D(
label="Point Cloud Key Frame 4",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
def on_submit(video_file, model_size, num_inference_steps, overlap):
print('on_submit is calling')
logger.info('on_submit is calling')
if video_file is None:
return None, None, None, None, None, None, "Please upload a video file"
try:
output_path, glb_files = process_video(
video_file, model_size, height, width, num_inference_steps, window_size, overlap
)
if output_path is None:
return None, None, None, None, None, None, glb_files
model3d_outputs = [None] * 4
if glb_files:
for i, glb_file in enumerate(glb_files[:4]):
if os.path.exists(glb_file):
model3d_outputs[i] = glb_file
return output_path, None, *model3d_outputs
except Exception as e:
logger.error(e)
return None, None, None, None, None, None
submit.click(
on_submit,
inputs=[
input_video, model_size, num_inference_steps, overlap
],
outputs=[
output_video, vis_video, output_point_map0, output_point_map1, output_point_map2, output_point_map3
]
)
logger.info(f'there are {len(example_inputs)} demo files')
print(f'there are {len(example_inputs)} demo files')
examples = gr.Examples(
examples=example_inputs,
inputs=[input_video, model_size, num_inference_steps, overlap],
outputs=[
output_video, vis_video,
output_point_map0, output_point_map1, output_point_map2, output_point_map3
],
fn=on_submit,
examples_per_page=6
)
if __name__ == '__main__':
#* main code, model and moge model initialization
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"device = {device}")
print(f"device = {device}")
load_model_1_3b(device=device)
load_moge_model(device=device)
# torch.cuda.empty_cache()
logger.info('model init done!')
print('model init done!')
# demo.queue().launch(share = True)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
# server_name="0.0.0.0", server_port=7860