DKT / dkt /lora /__init__.py
shaocong's picture
Initial commit
cf7f9c0
import torch
class GeneralLoRALoader:
def __init__(self, device="cpu", torch_dtype=torch.float32):
self.device = device
self.torch_dtype = torch_dtype
def get_name_dict(self, lora_state_dict):
lora_name_dict = {}
for key in lora_state_dict:
if ".lora_B." not in key:
continue
keys = key.split(".")
if len(keys) > keys.index("lora_B") + 2:
keys.pop(keys.index("lora_B") + 1)
keys.pop(keys.index("lora_B"))
if keys[0] == "diffusion_model":
keys.pop(0)
keys.pop(-1)
target_name = ".".join(keys)
lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A."))
return lora_name_dict
def load(self, model: torch.nn.Module, state_dict_lora, alpha=1.0):
updated_num = 0
lora_name_dict = self.get_name_dict(state_dict_lora)
for name, module in model.named_modules():
if name in lora_name_dict:
weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=self.device, dtype=self.torch_dtype)
weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=self.device, dtype=self.torch_dtype)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2)
weight_down = weight_down.squeeze(3).squeeze(2)
weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
weight_lora = alpha * torch.mm(weight_up, weight_down)
state_dict = module.state_dict()
state_dict["weight"] = state_dict["weight"].to(device=self.device, dtype=self.torch_dtype) + weight_lora
module.load_state_dict(state_dict)
updated_num += 1
print(f"{updated_num} tensors are updated by LoRA.")