Spaces:
Running
on
Zero
Running
on
Zero
save gpu useness
Browse files- app.py +61 -219
- app_old.py +756 -0
- dkt/pipelines/{wan_video_new.py → pipeline.py} +320 -6
app.py
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
|
| 2 |
import os
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
import gradio as gr
|
| 7 |
-
|
| 8 |
|
| 9 |
import numpy as np
|
| 10 |
import torch
|
|
@@ -12,46 +9,8 @@ from PIL import Image
|
|
| 12 |
from loguru import logger
|
| 13 |
from tqdm import tqdm
|
| 14 |
from tools.common_utils import save_video
|
| 15 |
-
from dkt.pipelines.
|
| 16 |
-
|
| 17 |
-
# try:
|
| 18 |
-
# import gradio_client.utils as _gc_utils
|
| 19 |
-
# if hasattr(_gc_utils, "get_type"):
|
| 20 |
-
# _orig_get_type = _gc_utils.get_type
|
| 21 |
-
# def _get_type_safe(schema):
|
| 22 |
-
# if not isinstance(schema, dict):
|
| 23 |
-
# return "Any"
|
| 24 |
-
# return _orig_get_type(schema)
|
| 25 |
-
# _gc_utils.get_type = _get_type_safe
|
| 26 |
-
# except Exception:
|
| 27 |
-
# pass
|
| 28 |
-
|
| 29 |
-
# # Additional guard: handle boolean JSON Schemas and parsing errors
|
| 30 |
-
# try:
|
| 31 |
-
# import gradio_client.utils as _gc_utils
|
| 32 |
-
# # Wrap the internal _json_schema_to_python_type if present
|
| 33 |
-
# if hasattr(_gc_utils, "_json_schema_to_python_type"):
|
| 34 |
-
# _orig_internal = _gc_utils._json_schema_to_python_type
|
| 35 |
-
# def _json_schema_to_python_type_safe(schema, defs=None):
|
| 36 |
-
# if isinstance(schema, bool):
|
| 37 |
-
# return "Any"
|
| 38 |
-
# try:
|
| 39 |
-
# return _orig_internal(schema, defs)
|
| 40 |
-
# except Exception:
|
| 41 |
-
# return "Any"
|
| 42 |
-
# _gc_utils._json_schema_to_python_type = _json_schema_to_python_type_safe
|
| 43 |
-
|
| 44 |
-
# # Also wrap the public json_schema_to_python_type to be extra defensive
|
| 45 |
-
# if hasattr(_gc_utils, "json_schema_to_python_type"):
|
| 46 |
-
# _orig_public = _gc_utils.json_schema_to_python_type
|
| 47 |
-
# def json_schema_to_python_type_safe(schema):
|
| 48 |
-
# try:
|
| 49 |
-
# return _orig_public(schema)
|
| 50 |
-
# except Exception:
|
| 51 |
-
# return "Any"
|
| 52 |
-
# _gc_utils.json_schema_to_python_type = json_schema_to_python_type_safe
|
| 53 |
-
# except Exception:
|
| 54 |
-
# pass
|
| 55 |
|
| 56 |
import cv2
|
| 57 |
import copy
|
|
@@ -59,7 +18,7 @@ import trimesh
|
|
| 59 |
|
| 60 |
from os.path import join
|
| 61 |
from tools.depth2pcd import depth2pcd
|
| 62 |
-
from moge.model.v2 import MoGeModel
|
| 63 |
|
| 64 |
|
| 65 |
from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
|
|
@@ -70,12 +29,18 @@ import tempfile
|
|
| 70 |
import spaces
|
| 71 |
|
| 72 |
|
| 73 |
-
|
| 74 |
-
MOGE_MODULE = None
|
| 75 |
#* better for bg: logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
|
| 76 |
PROMPT = 'depth'
|
| 77 |
NEGATIVE_PROMPT = ''
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
example_inputs = [
|
| 80 |
|
| 81 |
["examples/1.mp4", "1.3B", 5, 3],
|
|
@@ -116,15 +81,6 @@ example_inputs = [
|
|
| 116 |
# ["examples/b68045aa2128ab63d9c7518f8d62eafe.mp4", "1.3B", 5, 3],
|
| 117 |
]
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
height = 480
|
| 124 |
-
width = 832
|
| 125 |
-
window_size = 21
|
| 126 |
-
|
| 127 |
-
|
| 128 |
|
| 129 |
def resize_frame(frame, height, width):
|
| 130 |
frame = np.array(frame)
|
|
@@ -287,173 +243,74 @@ def get_model(model_size):
|
|
| 287 |
|
| 288 |
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
|
|
|
| 292 |
def process_video(
|
| 293 |
video_file,
|
| 294 |
model_size,
|
| 295 |
num_inference_steps,
|
| 296 |
overlap
|
| 297 |
):
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
if pipe is None:
|
| 302 |
-
return None, f"Model {model_size} not initialized. Please restart the application."
|
| 303 |
-
|
| 304 |
-
tmp_video_path = video_file
|
| 305 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 306 |
-
|
| 307 |
-
# 使用临时目录存储所有文件
|
| 308 |
-
cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
original_filename = f"input_{timestamp}.mp4"
|
| 312 |
-
dst_path = os.path.join(cur_save_dir, original_filename)
|
| 313 |
-
shutil.copy2(tmp_video_path, dst_path)
|
| 314 |
-
origin_frames, input_fps = extract_frames_from_video_file(tmp_video_path)
|
| 315 |
-
|
| 316 |
-
if not origin_frames:
|
| 317 |
-
return None, "Failed to extract frames from video"
|
| 318 |
-
|
| 319 |
-
logger.info(f"Extracted {len(origin_frames)} frames from video")
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
if original_width < original_height:
|
| 325 |
-
ROTATE = True
|
| 326 |
-
origin_frames = [x.transpose(Image.ROTATE_90) for x in origin_frames]
|
| 327 |
-
tmp = original_width
|
| 328 |
-
original_width = original_height
|
| 329 |
-
original_height = tmp
|
| 330 |
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
global height
|
| 334 |
-
global width
|
| 335 |
-
global window_size
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
|
|
|
|
|
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
num_frames=len(control_video),
|
| 352 |
-
seed=1,
|
| 353 |
-
tiled=False,
|
| 354 |
-
num_inference_steps=num_inference_steps,
|
| 355 |
-
sliding_window_size=window_size,
|
| 356 |
-
sliding_window_stride=window_size - overlap,
|
| 357 |
-
cfg_scale=1.0,
|
| 358 |
-
)
|
| 359 |
-
|
| 360 |
-
#* moge process
|
| 361 |
-
torch.cuda.empty_cache()
|
| 362 |
-
processed_video = video[:frame_length]
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
processed_video = [resize_frame(frame, original_height, original_width) for frame in processed_video]
|
| 366 |
-
if ROTATE:
|
| 367 |
-
processed_video = [x.transpose(Image.ROTATE_270) for x in processed_video]
|
| 368 |
-
origin_frames = [x.transpose(Image.ROTATE_270) for x in origin_frames]
|
| 369 |
-
|
| 370 |
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
if PROMPT == 'depth':
|
| 375 |
-
prediced_depth_map_np = [np.array(item).astype(np.float32).mean(-1) for item in processed_video]
|
| 376 |
-
prediced_depth_map_np = np.stack(prediced_depth_map_np)
|
| 377 |
-
prediced_depth_map_np = prediced_depth_map_np/ 255.0
|
| 378 |
-
__min = prediced_depth_map_np.min()
|
| 379 |
-
__max = prediced_depth_map_np.max()
|
| 380 |
-
prediced_depth_map_np = (prediced_depth_map_np - __min) / (__max - __min)
|
| 381 |
-
color_predictions = [colorize_depth_map(item) for item in prediced_depth_map_np]
|
| 382 |
-
else:
|
| 383 |
-
color_predictions = processed_video
|
| 384 |
-
save_video(color_predictions, output_path, fps=input_fps, quality=5)
|
| 385 |
|
| 386 |
|
| 387 |
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
resize_W,resize_H = origin_frames[0].size
|
| 391 |
-
|
| 392 |
-
vis_pc_num = 4
|
| 393 |
-
indices = np.linspace(0, frame_num-1, vis_pc_num)
|
| 394 |
-
indices = np.round(indices).astype(np.int32)
|
| 395 |
-
pc_save_dir = os.path.join(cur_save_dir, 'pointclouds')
|
| 396 |
-
os.makedirs(pc_save_dir, exist_ok=True)
|
| 397 |
-
|
| 398 |
-
glb_files = []
|
| 399 |
-
moge_device = MOGE_MODULE.device if MOGE_MODULE is not None else torch.device("cuda:0")
|
| 400 |
-
for idx in tqdm(indices):
|
| 401 |
-
orgin_rgb_frame = origin_frames[idx]
|
| 402 |
-
predicted_depth = processed_video[idx]
|
| 403 |
-
|
| 404 |
-
# Read the input image and convert to tensor (3, H, W) with RGB values normalized to [0, 1]
|
| 405 |
-
input_image_np = np.array(orgin_rgb_frame) # Convert PIL Image to numpy array
|
| 406 |
-
input_image = torch.tensor(input_image_np / 255, dtype=torch.float32, device=moge_device).permute(2, 0, 1)
|
| 407 |
-
|
| 408 |
-
output = MOGE_MODULE.infer(input_image)
|
| 409 |
-
#* "dict_keys(['points', 'intrinsics', 'depth', 'mask', 'normal'])"
|
| 410 |
-
moge_intrinsics = output['intrinsics'].cpu().numpy()
|
| 411 |
-
moge_mask = output['mask'].cpu().numpy()
|
| 412 |
-
moge_depth = output['depth'].cpu().numpy()
|
| 413 |
|
| 414 |
-
predicted_depth = np.array(predicted_depth)
|
| 415 |
-
predicted_depth = predicted_depth.mean(-1) / 255.0
|
| 416 |
-
|
| 417 |
-
metric_depth = transfer_pred_disp2depth(predicted_depth, moge_depth, moge_mask)
|
| 418 |
-
|
| 419 |
-
moge_intrinsics[0, 0] *= resize_W
|
| 420 |
-
moge_intrinsics[1, 1] *= resize_H
|
| 421 |
-
moge_intrinsics[0, 2] *= resize_W
|
| 422 |
-
moge_intrinsics[1, 2] *= resize_H
|
| 423 |
-
|
| 424 |
-
# pcd = depth2pcd(metric_depth, moge_intrinsics, color=cv2.cvtColor(input_image_np, cv2.COLOR_BGR2RGB), input_mask=moge_mask, ret_pcd=True)
|
| 425 |
-
pcd = depth2pcd(metric_depth, moge_intrinsics, color=input_image_np, input_mask=moge_mask, ret_pcd=True)
|
| 426 |
-
|
| 427 |
-
# pcd.points = o3d.utility.Vector3dVector(np.asarray(pcd.points) * np.array([1, -1, -1], dtype=np.float32))
|
| 428 |
-
|
| 429 |
-
apply_filter = True
|
| 430 |
-
if apply_filter:
|
| 431 |
-
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=3.0)
|
| 432 |
-
pcd = pcd.select_by_index(ind)
|
| 433 |
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
|
|
|
| 437 |
|
|
|
|
| 438 |
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
|
|
|
|
|
|
| 443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
if not success:
|
| 448 |
-
logger.warning(f"Failed to save GLB file: {glb_filename}")
|
| 449 |
|
| 450 |
-
glb_files.append(glb_filename)
|
| 451 |
|
| 452 |
-
return output_path, glb_files
|
| 453 |
-
|
| 454 |
-
except Exception as e:
|
| 455 |
-
logger.error(f"Error processing video: {str(e)}")
|
| 456 |
-
return None, f"Error: {str(e)}"
|
| 457 |
|
| 458 |
|
| 459 |
|
|
@@ -669,20 +526,16 @@ with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
|
|
| 669 |
)
|
| 670 |
|
| 671 |
def on_submit(video_file, model_size, num_inference_steps, overlap):
|
| 672 |
-
print('on_submit is calling')
|
| 673 |
logger.info('on_submit is calling')
|
| 674 |
-
|
| 675 |
if video_file is None:
|
| 676 |
return None, None, None, None, None, None, "Please upload a video file"
|
| 677 |
|
| 678 |
try:
|
| 679 |
-
|
| 680 |
output_path, glb_files = process_video(
|
| 681 |
video_file, model_size, num_inference_steps, overlap
|
| 682 |
)
|
| 683 |
|
| 684 |
|
| 685 |
-
|
| 686 |
if output_path is None:
|
| 687 |
return None, None, None, None, None, None, glb_files
|
| 688 |
|
|
@@ -732,23 +585,12 @@ with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
|
|
| 732 |
if __name__ == '__main__':
|
| 733 |
|
| 734 |
#* main code, model and moge model initialization
|
| 735 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 736 |
-
logger.info(f"device = {device}")
|
| 737 |
-
print(f"device = {device}")
|
| 738 |
|
| 739 |
-
load_model_1_3b(device=device)
|
| 740 |
-
load_moge_model(device=device)
|
| 741 |
-
# torch.cuda.empty_cache()
|
| 742 |
-
logger.info('model init done!')
|
| 743 |
-
print('model init done!')
|
| 744 |
|
| 745 |
-
demo.queue().launch(share = True)
|
| 746 |
-
|
| 747 |
-
# demo.queue(
|
| 748 |
-
# api_open=False,
|
| 749 |
-
# ).launch()
|
| 750 |
|
|
|
|
|
|
|
| 751 |
|
| 752 |
-
|
| 753 |
|
| 754 |
|
|
|
|
| 1 |
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
+
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
|
|
|
| 9 |
from loguru import logger
|
| 10 |
from tqdm import tqdm
|
| 11 |
from tools.common_utils import save_video
|
| 12 |
+
from dkt.pipelines.pipeline import DKTPipeline, ModelConfig
|
| 13 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
import cv2
|
| 16 |
import copy
|
|
|
|
| 18 |
|
| 19 |
from os.path import join
|
| 20 |
from tools.depth2pcd import depth2pcd
|
| 21 |
+
# from moge.model.v2 import MoGeModel
|
| 22 |
|
| 23 |
|
| 24 |
from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
|
|
|
|
| 29 |
import spaces
|
| 30 |
|
| 31 |
|
| 32 |
+
|
|
|
|
| 33 |
#* better for bg: logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
|
| 34 |
PROMPT = 'depth'
|
| 35 |
NEGATIVE_PROMPT = ''
|
| 36 |
|
| 37 |
+
height = 480
|
| 38 |
+
width = 832
|
| 39 |
+
window_size = 21
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
DKT_PIPELINE = DKTPipeline()
|
| 43 |
+
|
| 44 |
example_inputs = [
|
| 45 |
|
| 46 |
["examples/1.mp4", "1.3B", 5, 3],
|
|
|
|
| 81 |
# ["examples/b68045aa2128ab63d9c7518f8d62eafe.mp4", "1.3B", 5, 3],
|
| 82 |
]
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
def resize_frame(frame, height, width):
|
| 86 |
frame = np.array(frame)
|
|
|
|
| 243 |
|
| 244 |
|
| 245 |
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
|
| 249 |
def process_video(
|
| 250 |
video_file,
|
| 251 |
model_size,
|
| 252 |
num_inference_steps,
|
| 253 |
overlap
|
| 254 |
):
|
| 255 |
+
global height
|
| 256 |
+
global width
|
| 257 |
+
global window_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 260 |
+
cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
|
| 261 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
prediction_result = DKT_PIPELINE(video_file, prompt=PROMPT, \
|
| 265 |
+
negative_prompt=NEGATIVE_PROMPT,\
|
| 266 |
+
height=height,width=width,num_inference_steps=num_inference_steps,\
|
| 267 |
+
overlap=overlap, return_rgb=True)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
|
| 271 |
|
| 272 |
+
frame_length = len(prediction_result['rgb_frames'])
|
| 273 |
+
vis_pc_num = 4
|
| 274 |
+
indices = np.linspace(0, frame_length-1, vis_pc_num)
|
| 275 |
+
indices = np.round(indices).astype(np.int32)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
pcds = DKT_PIPELINE.prediction2pc_v2(prediction_result['depth_map'], prediction_result['rgb_frames'], indices, return_pcd=True)
|
| 279 |
+
glb_files = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
+
for idx, pcd in enumerate(pcds):
|
| 282 |
+
points = np.asarray(pcd.points)
|
| 283 |
+
colors = np.asarray(pcd.colors) if pcd.has_colors() else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
|
| 286 |
|
| 287 |
+
points[:, 2] = -points[:, 2]
|
| 288 |
+
points[:, 0] = -points[:, 0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
+
glb_filename = os.path.join(cur_save_dir, f'{timestamp}_{idx:02d}.glb')
|
| 292 |
+
success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
|
| 293 |
+
if not success:
|
| 294 |
+
logger.warning(f"Failed to save GLB file: {glb_filename}")
|
| 295 |
|
| 296 |
+
glb_files.append(glb_filename)
|
| 297 |
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
#* save depth predictions video
|
| 302 |
+
output_filename = f"output_{timestamp}.mp4"
|
| 303 |
+
output_path = os.path.join(cur_save_dir, output_filename)
|
| 304 |
|
| 305 |
+
|
| 306 |
+
cap = cv2.VideoCapture(video_file)
|
| 307 |
+
input_fps = cap.get(cv2.CAP_PROP_FPS)
|
| 308 |
+
cap.release()
|
| 309 |
|
| 310 |
+
save_video(prediction_result['colored_depth_map'], output_path, fps=input_fps, quality=8)
|
| 311 |
+
return output_path, glb_files
|
|
|
|
|
|
|
| 312 |
|
|
|
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
|
| 316 |
|
|
|
|
| 526 |
)
|
| 527 |
|
| 528 |
def on_submit(video_file, model_size, num_inference_steps, overlap):
|
|
|
|
| 529 |
logger.info('on_submit is calling')
|
|
|
|
| 530 |
if video_file is None:
|
| 531 |
return None, None, None, None, None, None, "Please upload a video file"
|
| 532 |
|
| 533 |
try:
|
|
|
|
| 534 |
output_path, glb_files = process_video(
|
| 535 |
video_file, model_size, num_inference_steps, overlap
|
| 536 |
)
|
| 537 |
|
| 538 |
|
|
|
|
| 539 |
if output_path is None:
|
| 540 |
return None, None, None, None, None, None, glb_files
|
| 541 |
|
|
|
|
| 585 |
if __name__ == '__main__':
|
| 586 |
|
| 587 |
#* main code, model and moge model initialization
|
|
|
|
|
|
|
|
|
|
| 588 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 589 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
|
| 591 |
+
|
| 592 |
+
demo.queue().launch(share = True)
|
| 593 |
|
| 594 |
+
|
| 595 |
|
| 596 |
|
app_old.py
ADDED
|
@@ -0,0 +1,756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
# gr.set_config(schema_inference=False)
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from loguru import logger
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
from tools.common_utils import save_video
|
| 15 |
+
from dkt.pipelines.pipeline import WanVideoPipeline, ModelConfig
|
| 16 |
+
|
| 17 |
+
# try:
|
| 18 |
+
# import gradio_client.utils as _gc_utils
|
| 19 |
+
# if hasattr(_gc_utils, "get_type"):
|
| 20 |
+
# _orig_get_type = _gc_utils.get_type
|
| 21 |
+
# def _get_type_safe(schema):
|
| 22 |
+
# if not isinstance(schema, dict):
|
| 23 |
+
# return "Any"
|
| 24 |
+
# return _orig_get_type(schema)
|
| 25 |
+
# _gc_utils.get_type = _get_type_safe
|
| 26 |
+
# except Exception:
|
| 27 |
+
# pass
|
| 28 |
+
|
| 29 |
+
# # Additional guard: handle boolean JSON Schemas and parsing errors
|
| 30 |
+
# try:
|
| 31 |
+
# import gradio_client.utils as _gc_utils
|
| 32 |
+
# # Wrap the internal _json_schema_to_python_type if present
|
| 33 |
+
# if hasattr(_gc_utils, "_json_schema_to_python_type"):
|
| 34 |
+
# _orig_internal = _gc_utils._json_schema_to_python_type
|
| 35 |
+
# def _json_schema_to_python_type_safe(schema, defs=None):
|
| 36 |
+
# if isinstance(schema, bool):
|
| 37 |
+
# return "Any"
|
| 38 |
+
# try:
|
| 39 |
+
# return _orig_internal(schema, defs)
|
| 40 |
+
# except Exception:
|
| 41 |
+
# return "Any"
|
| 42 |
+
# _gc_utils._json_schema_to_python_type = _json_schema_to_python_type_safe
|
| 43 |
+
|
| 44 |
+
# # Also wrap the public json_schema_to_python_type to be extra defensive
|
| 45 |
+
# if hasattr(_gc_utils, "json_schema_to_python_type"):
|
| 46 |
+
# _orig_public = _gc_utils.json_schema_to_python_type
|
| 47 |
+
# def json_schema_to_python_type_safe(schema):
|
| 48 |
+
# try:
|
| 49 |
+
# return _orig_public(schema)
|
| 50 |
+
# except Exception:
|
| 51 |
+
# return "Any"
|
| 52 |
+
# _gc_utils.json_schema_to_python_type = json_schema_to_python_type_safe
|
| 53 |
+
# except Exception:
|
| 54 |
+
# pass
|
| 55 |
+
|
| 56 |
+
import cv2
|
| 57 |
+
import copy
|
| 58 |
+
import trimesh
|
| 59 |
+
|
| 60 |
+
from os.path import join
|
| 61 |
+
from tools.depth2pcd import depth2pcd
|
| 62 |
+
from moge.model.v2 import MoGeModel
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
|
| 66 |
+
import glob
|
| 67 |
+
import datetime
|
| 68 |
+
import shutil
|
| 69 |
+
import tempfile
|
| 70 |
+
import spaces
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
PIPE_1_3B = None
|
| 74 |
+
MOGE_MODULE = None
|
| 75 |
+
#* better for bg: logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
|
| 76 |
+
PROMPT = 'depth'
|
| 77 |
+
NEGATIVE_PROMPT = ''
|
| 78 |
+
|
| 79 |
+
example_inputs = [
|
| 80 |
+
|
| 81 |
+
["examples/1.mp4", "1.3B", 5, 3],
|
| 82 |
+
["examples/33.mp4", "1.3B", 5, 3],
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
["examples/7.mp4", "1.3B", 5, 3],
|
| 87 |
+
["examples/8.mp4", "1.3B", 5, 3],
|
| 88 |
+
["examples/9.mp4", "1.3B", 5, 3],
|
| 89 |
+
|
| 90 |
+
# ["examples/178db6e89ab682bfc612a3290fec58dd.mp4", "1.3B", 5, 3],
|
| 91 |
+
["examples/36.mp4", "1.3B", 5, 3],
|
| 92 |
+
["examples/39.mp4", "1.3B", 5, 3],
|
| 93 |
+
|
| 94 |
+
# ["examples/b1f1fa44f414d7731cd7d77751093c44.mp4", "1.3B", 5, 3],
|
| 95 |
+
|
| 96 |
+
["examples/10.mp4", "1.3B", 5, 3],
|
| 97 |
+
["examples/30.mp4", "1.3B", 5, 3],
|
| 98 |
+
["examples/3.mp4", "1.3B", 5, 3],
|
| 99 |
+
|
| 100 |
+
["examples/32.mp4", "1.3B", 5, 3],
|
| 101 |
+
|
| 102 |
+
["examples/35.mp4", "1.3B", 5, 3],
|
| 103 |
+
|
| 104 |
+
["examples/40.mp4", "1.3B", 5, 3],
|
| 105 |
+
["examples/2.mp4", "1.3B", 5, 3],
|
| 106 |
+
|
| 107 |
+
# ["examples/31.mp4", "1.3B", 5, 3],
|
| 108 |
+
# ["examples/DJI_20250912164311_0007_D.mp4", "1.3B", 5, 3],
|
| 109 |
+
# ["examples/DJI_20250912163642_0003_D.mp4", "1.3B", 5, 3],
|
| 110 |
+
|
| 111 |
+
# ["examples/5.mp4", "1.3B", 5, 3],
|
| 112 |
+
|
| 113 |
+
# ["examples/1b0daeb776471c7389b36cee53049417.mp4", "1.3B", 5, 3],
|
| 114 |
+
# ["examples/8a6dfb8cfe80634f4f77ae9aa830d075.mp4", "1.3B", 5, 3],
|
| 115 |
+
# ["examples/69230f105ad8740e08d743a8ee11c651.mp4", "1.3B", 5, 3],
|
| 116 |
+
# ["examples/b68045aa2128ab63d9c7518f8d62eafe.mp4", "1.3B", 5, 3],
|
| 117 |
+
]
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
height = 480
|
| 124 |
+
width = 832
|
| 125 |
+
window_size = 21
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def resize_frame(frame, height, width):
|
| 130 |
+
frame = np.array(frame)
|
| 131 |
+
frame = torch.from_numpy(frame).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
| 132 |
+
frame = torch.nn.functional.interpolate(frame, (height, width), mode="bicubic", align_corners=False, antialias=True)
|
| 133 |
+
frame = (frame.squeeze(0).permute(1, 2, 0).clamp(0, 1) * 255).byte().numpy()
|
| 134 |
+
frame = Image.fromarray(frame)
|
| 135 |
+
return frame
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def pmap_to_glb(point_map, valid_mask, frame) -> trimesh.Scene:
|
| 140 |
+
pts_3d = point_map[valid_mask] * np.array([-1, -1, 1])
|
| 141 |
+
pts_rgb = frame[valid_mask]
|
| 142 |
+
|
| 143 |
+
# Initialize a 3D scene
|
| 144 |
+
scene_3d = trimesh.Scene()
|
| 145 |
+
|
| 146 |
+
# Add point cloud data to the scene
|
| 147 |
+
point_cloud_data = trimesh.PointCloud(
|
| 148 |
+
vertices=pts_3d, colors=pts_rgb
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
scene_3d.add_geometry(point_cloud_data)
|
| 152 |
+
return scene_3d
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def create_simple_glb_from_pointcloud(points, colors, glb_filename):
|
| 157 |
+
try:
|
| 158 |
+
if len(points) == 0:
|
| 159 |
+
logger.warning(f"No valid points to create GLB for {glb_filename}")
|
| 160 |
+
return False
|
| 161 |
+
|
| 162 |
+
if colors is not None:
|
| 163 |
+
# logger.info(f"Adding colors to GLB: shape={colors.shape}, range=[{colors.min():.3f}, {colors.max():.3f}]")
|
| 164 |
+
pts_rgb = colors
|
| 165 |
+
else:
|
| 166 |
+
logger.info("No colors provided, adding default white colors")
|
| 167 |
+
pts_rgb = np.ones((len(points), 3))
|
| 168 |
+
|
| 169 |
+
valid_mask = np.ones(len(points), dtype=bool)
|
| 170 |
+
|
| 171 |
+
scene_3d = pmap_to_glb(points, valid_mask, pts_rgb)
|
| 172 |
+
|
| 173 |
+
scene_3d.export(glb_filename)
|
| 174 |
+
# logger.info(f"Saved GLB file using trimesh: {glb_filename}")
|
| 175 |
+
|
| 176 |
+
return True
|
| 177 |
+
|
| 178 |
+
except Exception as e:
|
| 179 |
+
logger.error(f"Error creating GLB from pointcloud using trimesh: {str(e)}")
|
| 180 |
+
return False
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def extract_frames_from_video_file(video_path):
|
| 187 |
+
try:
|
| 188 |
+
cap = cv2.VideoCapture(video_path)
|
| 189 |
+
frames = []
|
| 190 |
+
|
| 191 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 192 |
+
if fps <= 0:
|
| 193 |
+
fps = 15.0
|
| 194 |
+
|
| 195 |
+
while True:
|
| 196 |
+
ret, frame = cap.read()
|
| 197 |
+
if not ret:
|
| 198 |
+
break
|
| 199 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 200 |
+
frame_rgb = Image.fromarray(frame_rgb)
|
| 201 |
+
frames.append(frame_rgb)
|
| 202 |
+
|
| 203 |
+
cap.release()
|
| 204 |
+
return frames, fps
|
| 205 |
+
except Exception as e:
|
| 206 |
+
logger.error(f"Error extracting frames from {video_path}: {str(e)}")
|
| 207 |
+
return [], 15.0
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def load_moge_model(device="cuda:0"):
|
| 212 |
+
global MOGE_MODULE
|
| 213 |
+
if MOGE_MODULE is not None:
|
| 214 |
+
return MOGE_MODULE
|
| 215 |
+
logger.info(f"Loading MoGe model on {device}...")
|
| 216 |
+
MOGE_MODULE = MoGeModel.from_pretrained('Ruicheng/moge-2-vitl-normal').to(device)
|
| 217 |
+
return MOGE_MODULE
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def load_model_1_3b(device="cuda:0"):
|
| 221 |
+
global PIPE_1_3B
|
| 222 |
+
|
| 223 |
+
if PIPE_1_3B is not None:
|
| 224 |
+
return PIPE_1_3B
|
| 225 |
+
|
| 226 |
+
logger.info(f"Loading 1.3B model on {device}...")
|
| 227 |
+
|
| 228 |
+
pipe = WanVideoPipeline.from_pretrained(
|
| 229 |
+
torch_dtype=torch.bfloat16,
|
| 230 |
+
device=device,
|
| 231 |
+
model_configs=[
|
| 232 |
+
ModelConfig(
|
| 233 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 234 |
+
origin_file_pattern="diffusion_pytorch_model*.safetensors",
|
| 235 |
+
offload_device="cpu",
|
| 236 |
+
),
|
| 237 |
+
ModelConfig(
|
| 238 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 239 |
+
origin_file_pattern="models_t5_umt5-xxl-enc-bf16.pth",
|
| 240 |
+
offload_device="cpu",
|
| 241 |
+
),
|
| 242 |
+
ModelConfig(
|
| 243 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 244 |
+
origin_file_pattern="Wan2.1_VAE.pth",
|
| 245 |
+
offload_device="cpu",
|
| 246 |
+
),
|
| 247 |
+
ModelConfig(
|
| 248 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 249 |
+
origin_file_pattern="models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
|
| 250 |
+
offload_device="cpu",
|
| 251 |
+
),
|
| 252 |
+
],
|
| 253 |
+
training_strategy="origin",
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
lora_config = ModelConfig(
|
| 258 |
+
model_id="Daniellesry/DKT-Depth-1-3B",
|
| 259 |
+
origin_file_pattern="dkt-1-3B.safetensors",
|
| 260 |
+
offload_device="cpu",
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
lora_config.download_if_necessary(use_usp=False)
|
| 264 |
+
|
| 265 |
+
pipe.load_lora(pipe.dit, lora_config.path, alpha=1.0)#todo is it work?
|
| 266 |
+
pipe.enable_vram_management()
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
PIPE_1_3B = pipe
|
| 270 |
+
|
| 271 |
+
return pipe
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def get_model(model_size):
|
| 278 |
+
if model_size == "1.3B":
|
| 279 |
+
assert PIPE_1_3B is not None, "1.3B model not initialized"
|
| 280 |
+
return PIPE_1_3B
|
| 281 |
+
else:
|
| 282 |
+
raise ValueError(f"Unsupported model size: {model_size}")
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
@spaces.GPU(duration=120)
|
| 293 |
+
@torch.inference_mode()
|
| 294 |
+
def process_video(
|
| 295 |
+
video_file,
|
| 296 |
+
model_size,
|
| 297 |
+
num_inference_steps,
|
| 298 |
+
overlap
|
| 299 |
+
):
|
| 300 |
+
|
| 301 |
+
pipe = get_model(model_size)
|
| 302 |
+
|
| 303 |
+
if pipe is None:
|
| 304 |
+
return None, f"Model {model_size} not initialized. Please restart the application."
|
| 305 |
+
|
| 306 |
+
tmp_video_path = video_file
|
| 307 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
|
| 311 |
+
origin_frames, input_fps = extract_frames_from_video_file(tmp_video_path)
|
| 312 |
+
|
| 313 |
+
if not origin_frames:
|
| 314 |
+
return None, "Failed to extract frames from video"
|
| 315 |
+
|
| 316 |
+
logger.info(f"Extracted {len(origin_frames)} frames from video")
|
| 317 |
+
|
| 318 |
+
original_width, original_height = origin_frames[0].size
|
| 319 |
+
ROTATE = False
|
| 320 |
+
if original_width < original_height:
|
| 321 |
+
ROTATE = True
|
| 322 |
+
origin_frames = [x.transpose(Image.ROTATE_90) for x in origin_frames]
|
| 323 |
+
tmp = original_width
|
| 324 |
+
original_width = original_height
|
| 325 |
+
original_height = tmp
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
global height
|
| 330 |
+
global width
|
| 331 |
+
global window_size
|
| 332 |
+
|
| 333 |
+
frames = [resize_frame(frame, height, width) for frame in origin_frames]
|
| 334 |
+
frame_length = len(frames)
|
| 335 |
+
if (frame_length - 1) % 4 != 0:
|
| 336 |
+
new_len = ((frame_length - 1) // 4 + 1) * 4 + 1
|
| 337 |
+
frames = frames + [copy.deepcopy(frames[-1]) for _ in range(new_len - frame_length)]
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
control_video = frames
|
| 341 |
+
video, vae_outs = pipe(
|
| 342 |
+
prompt=PROMPT,
|
| 343 |
+
negative_prompt=NEGATIVE_PROMPT,
|
| 344 |
+
control_video=control_video,
|
| 345 |
+
height=height,
|
| 346 |
+
width=width,
|
| 347 |
+
num_frames=len(control_video),
|
| 348 |
+
seed=1,
|
| 349 |
+
tiled=False,
|
| 350 |
+
num_inference_steps=num_inference_steps,
|
| 351 |
+
sliding_window_size=window_size,
|
| 352 |
+
sliding_window_stride=window_size - overlap,
|
| 353 |
+
cfg_scale=1.0,
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
#* moge process
|
| 357 |
+
torch.cuda.empty_cache()
|
| 358 |
+
processed_video = video[:frame_length]
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
processed_video = [resize_frame(frame, original_height, original_width) for frame in processed_video]
|
| 362 |
+
if ROTATE:
|
| 363 |
+
processed_video = [x.transpose(Image.ROTATE_270) for x in processed_video]
|
| 364 |
+
origin_frames = [x.transpose(Image.ROTATE_270) for x in origin_frames]
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
color_predictions = []
|
| 368 |
+
if PROMPT == 'depth':
|
| 369 |
+
prediced_depth_map_np = [np.array(item).astype(np.float32).mean(-1) for item in processed_video]
|
| 370 |
+
prediced_depth_map_np = np.stack(prediced_depth_map_np)
|
| 371 |
+
prediced_depth_map_np = prediced_depth_map_np/ 255.0
|
| 372 |
+
__min = prediced_depth_map_np.min()
|
| 373 |
+
__max = prediced_depth_map_np.max()
|
| 374 |
+
prediced_depth_map_np = (prediced_depth_map_np - __min) / (__max - __min)
|
| 375 |
+
color_predictions = [colorize_depth_map(item) for item in prediced_depth_map_np]
|
| 376 |
+
else:
|
| 377 |
+
color_predictions = processed_video
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
#* required parameters for MoGe
|
| 384 |
+
|
| 385 |
+
# todo, inference MoGe only once
|
| 386 |
+
|
| 387 |
+
resize_W,resize_H = origin_frames[0].size
|
| 388 |
+
|
| 389 |
+
vis_pc_num = 4
|
| 390 |
+
indices = np.linspace(0, frame_length-1, vis_pc_num)
|
| 391 |
+
indices = np.round(indices).astype(np.int32)
|
| 392 |
+
pc_save_dir = os.path.join(cur_save_dir, 'pointclouds')
|
| 393 |
+
os.makedirs(pc_save_dir, exist_ok=True)
|
| 394 |
+
|
| 395 |
+
glb_files = []
|
| 396 |
+
moge_device = MOGE_MODULE.device if MOGE_MODULE is not None else torch.device("cuda:0")
|
| 397 |
+
|
| 398 |
+
for idx in tqdm(indices):
|
| 399 |
+
orgin_rgb_frame = origin_frames[idx]
|
| 400 |
+
predicted_depth = processed_video[idx]
|
| 401 |
+
|
| 402 |
+
# Read the input image and convert to tensor (3, H, W) with RGB values normalized to [0, 1]
|
| 403 |
+
input_image_np = np.array(orgin_rgb_frame) # Convert PIL Image to numpy array
|
| 404 |
+
input_image = torch.tensor(input_image_np / 255, dtype=torch.float32, device=moge_device).permute(2, 0, 1)
|
| 405 |
+
|
| 406 |
+
output = MOGE_MODULE.infer(input_image)
|
| 407 |
+
#* "dict_keys(['points', 'intrinsics', 'depth', 'mask', 'normal'])"
|
| 408 |
+
moge_intrinsics = output['intrinsics'].cpu().numpy()
|
| 409 |
+
moge_mask = output['mask'].cpu().numpy()
|
| 410 |
+
moge_depth = output['depth'].cpu().numpy()
|
| 411 |
+
|
| 412 |
+
predicted_depth = np.array(predicted_depth)
|
| 413 |
+
predicted_depth = predicted_depth.mean(-1) / 255.0
|
| 414 |
+
|
| 415 |
+
metric_depth = transfer_pred_disp2depth(predicted_depth, moge_depth, moge_mask)
|
| 416 |
+
|
| 417 |
+
moge_intrinsics[0, 0] *= resize_W
|
| 418 |
+
moge_intrinsics[1, 1] *= resize_H
|
| 419 |
+
moge_intrinsics[0, 2] *= resize_W
|
| 420 |
+
moge_intrinsics[1, 2] *= resize_H
|
| 421 |
+
|
| 422 |
+
# pcd = depth2pcd(metric_depth, moge_intrinsics, color=cv2.cvtColor(input_image_np, cv2.COLOR_BGR2RGB), input_mask=moge_mask, ret_pcd=True)
|
| 423 |
+
pcd = depth2pcd(metric_depth, moge_intrinsics, color=input_image_np, input_mask=moge_mask, ret_pcd=True)
|
| 424 |
+
|
| 425 |
+
# pcd.points = o3d.utility.Vector3dVector(np.asarray(pcd.points) * np.array([1, -1, -1], dtype=np.float32))
|
| 426 |
+
|
| 427 |
+
apply_filter = True
|
| 428 |
+
if apply_filter:
|
| 429 |
+
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=3.0)
|
| 430 |
+
pcd = pcd.select_by_index(ind)
|
| 431 |
+
|
| 432 |
+
#* save pcd: o3d.io.write_point_cloud(f'{pc_save_dir}/{timestamp}_{idx:02d}.ply', pcd)
|
| 433 |
+
points = np.asarray(pcd.points)
|
| 434 |
+
colors = np.asarray(pcd.colors) if pcd.has_colors() else None
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
# ==== 新增:上下翻转点云 ====
|
| 438 |
+
points[:, 2] = -points[:, 2]
|
| 439 |
+
points[:, 0] = -points[:, 0]
|
| 440 |
+
# =========================
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
glb_filename = os.path.join(pc_save_dir, f'{timestamp}_{idx:02d}.glb')
|
| 444 |
+
success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
|
| 445 |
+
if not success:
|
| 446 |
+
logger.warning(f"Failed to save GLB file: {glb_filename}")
|
| 447 |
+
|
| 448 |
+
glb_files.append(glb_filename)
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
#* save depth predictions video
|
| 453 |
+
output_filename = f"output_{timestamp}.mp4"
|
| 454 |
+
output_path = os.path.join(cur_save_dir, output_filename)
|
| 455 |
+
save_video(color_predictions, output_path, fps=input_fps, quality=5)
|
| 456 |
+
return output_path, glb_files
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
#* gradio creation and initialization
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
css = """
|
| 467 |
+
#video-display-container {
|
| 468 |
+
max-height: 100vh;
|
| 469 |
+
}
|
| 470 |
+
#video-display-input {
|
| 471 |
+
max-height: 80vh;
|
| 472 |
+
}
|
| 473 |
+
#video-display-output {
|
| 474 |
+
max-height: 80vh;
|
| 475 |
+
}
|
| 476 |
+
#download {
|
| 477 |
+
height: 62px;
|
| 478 |
+
}
|
| 479 |
+
.title {
|
| 480 |
+
text-align: center;
|
| 481 |
+
}
|
| 482 |
+
.description {
|
| 483 |
+
text-align: center;
|
| 484 |
+
}
|
| 485 |
+
.gradio-examples {
|
| 486 |
+
max-height: 400px;
|
| 487 |
+
overflow-y: auto;
|
| 488 |
+
}
|
| 489 |
+
.gradio-examples .examples-container {
|
| 490 |
+
display: grid;
|
| 491 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
| 492 |
+
gap: 10px;
|
| 493 |
+
padding: 10px;
|
| 494 |
+
}
|
| 495 |
+
.gradio-container .gradio-examples .pagination,
|
| 496 |
+
.gradio-container .gradio-examples .pagination button,
|
| 497 |
+
div[data-testid="examples"] .pagination,
|
| 498 |
+
div[data-testid="examples"] .pagination button {
|
| 499 |
+
font-size: 28px !important;
|
| 500 |
+
font-weight: bold !important;
|
| 501 |
+
padding: 15px 20px !important;
|
| 502 |
+
min-width: 60px !important;
|
| 503 |
+
height: 60px !important;
|
| 504 |
+
border-radius: 10px !important;
|
| 505 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 506 |
+
color: white !important;
|
| 507 |
+
border: none !important;
|
| 508 |
+
cursor: pointer !important;
|
| 509 |
+
margin: 8px !important;
|
| 510 |
+
display: inline-block !important;
|
| 511 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
|
| 512 |
+
transition: all 0.3s ease !important;
|
| 513 |
+
}
|
| 514 |
+
|
| 515 |
+
div[data-testid="examples"] .pagination button:not(.active),
|
| 516 |
+
.gradio-container .gradio-examples .pagination button:not(.active) {
|
| 517 |
+
font-size: 32px !important;
|
| 518 |
+
font-weight: bold !important;
|
| 519 |
+
padding: 15px 20px !important;
|
| 520 |
+
min-width: 60px !important;
|
| 521 |
+
height: 60px !important;
|
| 522 |
+
background: linear-gradient(135deg, #8a9cf0 0%, #9a6bb2 100%) !important;
|
| 523 |
+
opacity: 0.8 !important;
|
| 524 |
+
}
|
| 525 |
+
|
| 526 |
+
div[data-testid="examples"] .pagination button:hover,
|
| 527 |
+
.gradio-container .gradio-examples .pagination button:hover {
|
| 528 |
+
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%) !important;
|
| 529 |
+
transform: translateY(-2px) !important;
|
| 530 |
+
box-shadow: 0 6px 12px rgba(0,0,0,0.3) !important;
|
| 531 |
+
opacity: 1 !important;
|
| 532 |
+
}
|
| 533 |
+
|
| 534 |
+
div[data-testid="examples"] .pagination button.active,
|
| 535 |
+
.gradio-container .gradio-examples .pagination button.active {
|
| 536 |
+
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%) !important;
|
| 537 |
+
box-shadow: 0 4px 8px rgba(17,153,142,0.4) !important;
|
| 538 |
+
opacity: 1 !important;
|
| 539 |
+
}
|
| 540 |
+
|
| 541 |
+
button[class*="pagination"],
|
| 542 |
+
button[class*="page"] {
|
| 543 |
+
font-size: 28px !important;
|
| 544 |
+
font-weight: bold !important;
|
| 545 |
+
padding: 15px 20px !important;
|
| 546 |
+
min-width: 60px !important;
|
| 547 |
+
height: 60px !important;
|
| 548 |
+
border-radius: 10px !important;
|
| 549 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 550 |
+
color: white !important;
|
| 551 |
+
border: none !important;
|
| 552 |
+
cursor: pointer !important;
|
| 553 |
+
margin: 8px !important;
|
| 554 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
|
| 555 |
+
transition: all 0.3s ease !important;
|
| 556 |
+
}
|
| 557 |
+
"""
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
head_html = """
|
| 562 |
+
<link rel="icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
|
| 563 |
+
<link rel="shortcut icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
|
| 564 |
+
<link rel="icon" type="image/png" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
|
| 565 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 566 |
+
"""
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
# description = """Official demo for **DKT **."""
|
| 571 |
+
|
| 572 |
+
# with gr.Blocks(css=css, title="DKT - Diffusion Knows Transparency", favicon_path="favicon.ico") as demo:
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
|
| 576 |
+
# gr.Markdown(title, elem_classes=["title"])
|
| 577 |
+
"""
|
| 578 |
+
|
| 579 |
+
<a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 580 |
+
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
| 581 |
+
</a>
|
| 582 |
+
<a title="arXiv" href="https://arxiv.org/abs/2406.16864" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 583 |
+
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
| 584 |
+
</a>
|
| 585 |
+
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 586 |
+
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
| 587 |
+
</a>
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
"""
|
| 591 |
+
|
| 592 |
+
gr.Markdown(
|
| 593 |
+
"""
|
| 594 |
+
# Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation
|
| 595 |
+
<p align="center">
|
| 596 |
+
<a title="Github" href="https://github.com/Daniellli/DKT" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 597 |
+
<img src="https://img.shields.io/github/stars/Daniellli/DKT?style=social" alt="badge-github-stars">
|
| 598 |
+
</a>
|
| 599 |
+
"""
|
| 600 |
+
)
|
| 601 |
+
# gr.Markdown(description, elem_classes=["description"])
|
| 602 |
+
# gr.Markdown("### Video Processing Demo", elem_classes=["description"])
|
| 603 |
+
|
| 604 |
+
with gr.Row():
|
| 605 |
+
with gr.Column():
|
| 606 |
+
input_video = gr.Video(label="Input Video", elem_id='video-display-input')
|
| 607 |
+
|
| 608 |
+
model_size = gr.Radio(
|
| 609 |
+
# choices=["1.3B", "14B"],
|
| 610 |
+
choices=["1.3B"],
|
| 611 |
+
value="1.3B",
|
| 612 |
+
label="Model Size"
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
with gr.Accordion("Advanced Parameters", open=False):
|
| 617 |
+
num_inference_steps = gr.Slider(
|
| 618 |
+
minimum=1, maximum=50, value=5, step=1,
|
| 619 |
+
label="Number of Inference Steps"
|
| 620 |
+
)
|
| 621 |
+
overlap = gr.Slider(
|
| 622 |
+
minimum=1, maximum=20, value=3, step=1,
|
| 623 |
+
label="Overlap"
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
submit = gr.Button(value="Compute Depth", variant="primary")
|
| 627 |
+
|
| 628 |
+
with gr.Column():
|
| 629 |
+
output_video = gr.Video(
|
| 630 |
+
label="Depth Outputs",
|
| 631 |
+
elem_id='video-display-output',
|
| 632 |
+
autoplay=True
|
| 633 |
+
)
|
| 634 |
+
vis_video = gr.Video(
|
| 635 |
+
label="Visualization Video",
|
| 636 |
+
visible=False,
|
| 637 |
+
autoplay=True
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
+
with gr.Row():
|
| 641 |
+
gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
|
| 642 |
+
|
| 643 |
+
with gr.Row(equal_height=True):
|
| 644 |
+
with gr.Column(scale=1):
|
| 645 |
+
output_point_map0 = gr.Model3D(
|
| 646 |
+
label="Point Cloud Key Frame 1",
|
| 647 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 648 |
+
interactive=False,
|
| 649 |
+
)
|
| 650 |
+
with gr.Column(scale=1):
|
| 651 |
+
output_point_map1 = gr.Model3D(
|
| 652 |
+
label="Point Cloud Key Frame 2",
|
| 653 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 654 |
+
interactive=False
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
with gr.Row(equal_height=True):
|
| 659 |
+
|
| 660 |
+
with gr.Column(scale=1):
|
| 661 |
+
output_point_map2 = gr.Model3D(
|
| 662 |
+
label="Point Cloud Key Frame 3",
|
| 663 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 664 |
+
interactive=False
|
| 665 |
+
)
|
| 666 |
+
with gr.Column(scale=1):
|
| 667 |
+
output_point_map3 = gr.Model3D(
|
| 668 |
+
label="Point Cloud Key Frame 4",
|
| 669 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 670 |
+
interactive=False
|
| 671 |
+
)
|
| 672 |
+
|
| 673 |
+
def on_submit(video_file, model_size, num_inference_steps, overlap):
|
| 674 |
+
print('on_submit is calling')
|
| 675 |
+
logger.info('on_submit is calling')
|
| 676 |
+
|
| 677 |
+
if video_file is None:
|
| 678 |
+
return None, None, None, None, None, None, "Please upload a video file"
|
| 679 |
+
|
| 680 |
+
try:
|
| 681 |
+
|
| 682 |
+
output_path, glb_files = process_video(
|
| 683 |
+
video_file, model_size, num_inference_steps, overlap
|
| 684 |
+
)
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
if output_path is None:
|
| 689 |
+
return None, None, None, None, None, None, glb_files
|
| 690 |
+
|
| 691 |
+
model3d_outputs = [None] * 4
|
| 692 |
+
if glb_files:
|
| 693 |
+
for i, glb_file in enumerate(glb_files[:4]):
|
| 694 |
+
if os.path.exists(glb_file):
|
| 695 |
+
model3d_outputs[i] = glb_file
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
return output_path, None, *model3d_outputs
|
| 700 |
+
|
| 701 |
+
except Exception as e:
|
| 702 |
+
logger.error(e)
|
| 703 |
+
return None, None, None, None, None, None
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
submit.click(
|
| 707 |
+
on_submit,
|
| 708 |
+
inputs=[
|
| 709 |
+
input_video, model_size, num_inference_steps, overlap
|
| 710 |
+
],
|
| 711 |
+
outputs=[
|
| 712 |
+
output_video, vis_video, output_point_map0, output_point_map1, output_point_map2, output_point_map3
|
| 713 |
+
]
|
| 714 |
+
)
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
logger.info(f'there are {len(example_inputs)} demo files')
|
| 719 |
+
print(f'there are {len(example_inputs)} demo files')
|
| 720 |
+
|
| 721 |
+
examples = gr.Examples(
|
| 722 |
+
examples=example_inputs,
|
| 723 |
+
inputs=[input_video, model_size, num_inference_steps, overlap],
|
| 724 |
+
outputs=[
|
| 725 |
+
output_video, vis_video,
|
| 726 |
+
output_point_map0, output_point_map1, output_point_map2, output_point_map3
|
| 727 |
+
],
|
| 728 |
+
fn=on_submit,
|
| 729 |
+
examples_per_page=12,
|
| 730 |
+
cache_examples=False
|
| 731 |
+
)
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
if __name__ == '__main__':
|
| 735 |
+
|
| 736 |
+
#* main code, model and moge model initialization
|
| 737 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 738 |
+
logger.info(f"device = {device}")
|
| 739 |
+
print(f"device = {device}")
|
| 740 |
+
|
| 741 |
+
load_model_1_3b(device=device)
|
| 742 |
+
load_moge_model(device=device)
|
| 743 |
+
# torch.cuda.empty_cache()
|
| 744 |
+
logger.info('model init done!')
|
| 745 |
+
print('model init done!')
|
| 746 |
+
|
| 747 |
+
demo.queue().launch(share = True)
|
| 748 |
+
|
| 749 |
+
# demo.queue(
|
| 750 |
+
# api_open=False,
|
| 751 |
+
# ).launch()
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
# server_name="0.0.0.0", server_port=7860
|
| 755 |
+
|
| 756 |
+
|
dkt/pipelines/{wan_video_new.py → pipeline.py}
RENAMED
|
@@ -29,7 +29,7 @@ from ..lora import GeneralLoRALoader
|
|
| 29 |
|
| 30 |
from loguru import logger
|
| 31 |
|
| 32 |
-
|
| 33 |
|
| 34 |
class BasePipeline(torch.nn.Module):
|
| 35 |
|
|
@@ -222,7 +222,7 @@ class ModelConfig:
|
|
| 222 |
allow_patterns=allow_file_pattern,
|
| 223 |
ignore_patterns=downloaded_files if downloaded_files else None
|
| 224 |
)
|
| 225 |
-
|
| 226 |
# Let rank 1, 2, ... wait for rank 0
|
| 227 |
if use_usp:
|
| 228 |
import torch.distributed as dist
|
|
@@ -716,6 +716,323 @@ class WanVideoPipeline(BasePipeline):
|
|
| 716 |
|
| 717 |
|
| 718 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 719 |
|
| 720 |
|
| 721 |
|
|
@@ -1480,7 +1797,4 @@ def model_fn_wan_video(
|
|
| 1480 |
|
| 1481 |
#* unpatchify, from [1, ( (F-1)/4 * H/16 * W/16), 64] to [1, 16, (F-1)/4, H/8, W/8]
|
| 1482 |
x = dit.unpatchify(x, (f, h, w))
|
| 1483 |
-
return x
|
| 1484 |
-
|
| 1485 |
-
|
| 1486 |
-
|
|
|
|
| 29 |
|
| 30 |
from loguru import logger
|
| 31 |
|
| 32 |
+
import spaces
|
| 33 |
|
| 34 |
class BasePipeline(torch.nn.Module):
|
| 35 |
|
|
|
|
| 222 |
allow_patterns=allow_file_pattern,
|
| 223 |
ignore_patterns=downloaded_files if downloaded_files else None
|
| 224 |
)
|
| 225 |
+
|
| 226 |
# Let rank 1, 2, ... wait for rank 0
|
| 227 |
if use_usp:
|
| 228 |
import torch.distributed as dist
|
|
|
|
| 716 |
|
| 717 |
|
| 718 |
|
| 719 |
+
def extract_frames_from_video_file(video_path):
|
| 720 |
+
try:
|
| 721 |
+
cap = cv2.VideoCapture(video_path)
|
| 722 |
+
frames = []
|
| 723 |
+
|
| 724 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 725 |
+
if fps <= 0:
|
| 726 |
+
fps = 15.0
|
| 727 |
+
|
| 728 |
+
while True:
|
| 729 |
+
ret, frame = cap.read()
|
| 730 |
+
if not ret:
|
| 731 |
+
break
|
| 732 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 733 |
+
frame_rgb = Image.fromarray(frame_rgb)
|
| 734 |
+
frames.append(frame_rgb)
|
| 735 |
+
|
| 736 |
+
cap.release()
|
| 737 |
+
return frames, fps
|
| 738 |
+
except Exception as e:
|
| 739 |
+
logger.error(f"Error extracting frames from {video_path}: {str(e)}")
|
| 740 |
+
return [], 15.0
|
| 741 |
+
|
| 742 |
+
|
| 743 |
+
def resize_frame(frame, height, width):
|
| 744 |
+
frame = np.array(frame)
|
| 745 |
+
frame = torch.from_numpy(frame).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
| 746 |
+
frame = torch.nn.functional.interpolate(frame, (height, width), mode="bicubic", align_corners=False, antialias=True)
|
| 747 |
+
frame = (frame.squeeze(0).permute(1, 2, 0).clamp(0, 1) * 255).byte().numpy()
|
| 748 |
+
frame = Image.fromarray(frame)
|
| 749 |
+
return frame
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
from moge.model.v2 import MoGeModel
|
| 754 |
+
from tools.eval_utils import transfer_pred_disp2depth, transfer_pred_disp2depth_v2, colorize_depth_map
|
| 755 |
+
from tools.depth2pcd import depth2pcd
|
| 756 |
+
import cv2, copy
|
| 757 |
+
|
| 758 |
+
class DKTPipeline:
|
| 759 |
+
def __init__(self, ):
|
| 760 |
+
|
| 761 |
+
self.main_pipe = self.init_model()
|
| 762 |
+
|
| 763 |
+
self.moge_pipe = self.load_moge_model()
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
def init_model(self ):
|
| 770 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 771 |
+
|
| 772 |
+
pipe = WanVideoPipeline.from_pretrained(
|
| 773 |
+
torch_dtype=torch.bfloat16,
|
| 774 |
+
device=device,
|
| 775 |
+
model_configs=[
|
| 776 |
+
ModelConfig(
|
| 777 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 778 |
+
origin_file_pattern="diffusion_pytorch_model*.safetensors",
|
| 779 |
+
offload_device="cpu",
|
| 780 |
+
),
|
| 781 |
+
ModelConfig(
|
| 782 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 783 |
+
origin_file_pattern="models_t5_umt5-xxl-enc-bf16.pth",
|
| 784 |
+
offload_device="cpu",
|
| 785 |
+
),
|
| 786 |
+
ModelConfig(
|
| 787 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 788 |
+
origin_file_pattern="Wan2.1_VAE.pth",
|
| 789 |
+
offload_device="cpu",
|
| 790 |
+
),
|
| 791 |
+
ModelConfig(
|
| 792 |
+
model_id="PAI/Wan2.1-Fun-1.3B-Control",
|
| 793 |
+
origin_file_pattern="models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
|
| 794 |
+
offload_device="cpu",
|
| 795 |
+
),
|
| 796 |
+
],
|
| 797 |
+
training_strategy="origin",
|
| 798 |
+
)
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
lora_config = ModelConfig(
|
| 802 |
+
model_id="Daniellesry/DKT-Depth-1-3B",
|
| 803 |
+
origin_file_pattern="dkt-1-3B.safetensors",
|
| 804 |
+
offload_device="cpu",
|
| 805 |
+
)
|
| 806 |
+
lora_config.download_if_necessary(use_usp=False)
|
| 807 |
+
|
| 808 |
+
pipe.load_lora(pipe.dit, lora_config.path, alpha=1.0)#todo is it work?
|
| 809 |
+
pipe.enable_vram_management()
|
| 810 |
+
return pipe
|
| 811 |
+
|
| 812 |
+
def load_moge_model(self):
|
| 813 |
+
device= torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 814 |
+
|
| 815 |
+
cached_model_path = 'checkpoints/moge_ckpt/moge-2-vitl-normal/model.pt'
|
| 816 |
+
if os.path.exists(cached_model_path):
|
| 817 |
+
logger.info(f"Found cached model at {cached_model_path}, loading from cache...")
|
| 818 |
+
moge_pipe = MoGeModel.from_pretrained(cached_model_path).to(device)
|
| 819 |
+
else:
|
| 820 |
+
logger.info(f"Cache not found at {cached_model_path}, downloading from HuggingFace...")
|
| 821 |
+
os.makedirs(os.path.dirname(cached_model_path), exist_ok=True)
|
| 822 |
+
moge_pipe = MoGeModel.from_pretrained('Ruicheng/moge-2-vitl-normal', cache_dir=os.path.dirname(cached_model_path)).to(device)
|
| 823 |
+
|
| 824 |
+
return moge_pipe
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
|
| 828 |
+
@spaces.GPU(duration=120)
|
| 829 |
+
@torch.inference_mode()
|
| 830 |
+
def __call__(self, video_file, prompt='depth', \
|
| 831 |
+
negative_prompt='', height=480, width=832, \
|
| 832 |
+
num_inference_steps=5, window_size=21, \
|
| 833 |
+
overlap=3, vis_pc = False, return_rgb = False):
|
| 834 |
+
|
| 835 |
+
|
| 836 |
+
origin_frames, input_fps = extract_frames_from_video_file(video_file)
|
| 837 |
+
|
| 838 |
+
frame_length = len(origin_frames)
|
| 839 |
+
|
| 840 |
+
original_width, original_height = origin_frames[0].size
|
| 841 |
+
|
| 842 |
+
ROTATE = False
|
| 843 |
+
if original_width < original_height:#* ensure the width is the longer side
|
| 844 |
+
ROTATE = True
|
| 845 |
+
origin_frames = [x.transpose(Image.ROTATE_90) for x in origin_frames]
|
| 846 |
+
tmp = original_width
|
| 847 |
+
original_width = original_height
|
| 848 |
+
original_height = tmp
|
| 849 |
+
|
| 850 |
+
|
| 851 |
+
frames = [resize_frame(frame, height, width) for frame in origin_frames]
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
if (frame_length - 1) % 4 != 0:
|
| 855 |
+
new_len = ((frame_length - 1) // 4 + 1) * 4 + 1
|
| 856 |
+
frames = frames + [copy.deepcopy(frames[-1]) for _ in range(new_len - frame_length)]
|
| 857 |
+
|
| 858 |
+
|
| 859 |
+
|
| 860 |
+
|
| 861 |
+
video, vae_outs = self.main_pipe(
|
| 862 |
+
prompt=prompt,
|
| 863 |
+
negative_prompt=negative_prompt,
|
| 864 |
+
control_video=frames,
|
| 865 |
+
height=height,
|
| 866 |
+
width=width,
|
| 867 |
+
num_frames=len(frames),
|
| 868 |
+
seed=1,
|
| 869 |
+
tiled=False,
|
| 870 |
+
num_inference_steps=num_inference_steps,
|
| 871 |
+
sliding_window_size=window_size,
|
| 872 |
+
sliding_window_stride=window_size - overlap,
|
| 873 |
+
cfg_scale=1.0,
|
| 874 |
+
)
|
| 875 |
+
torch.cuda.empty_cache()
|
| 876 |
+
|
| 877 |
+
processed_video = video[:frame_length]
|
| 878 |
+
processed_video = [resize_frame(frame, original_height, original_width) for frame in processed_video]
|
| 879 |
+
|
| 880 |
+
if ROTATE:
|
| 881 |
+
processed_video = [x.transpose(Image.ROTATE_270) for x in processed_video]
|
| 882 |
+
origin_frames = [x.transpose(Image.ROTATE_270) for x in origin_frames]
|
| 883 |
+
|
| 884 |
+
color_predictions = []
|
| 885 |
+
if prompt == 'depth':
|
| 886 |
+
prediced_depth_map_np = [np.array(item).astype(np.float32).mean(-1) for item in processed_video]
|
| 887 |
+
prediced_depth_map_np = np.stack(prediced_depth_map_np)
|
| 888 |
+
prediced_depth_map_np = prediced_depth_map_np / 255.0
|
| 889 |
+
|
| 890 |
+
__min = prediced_depth_map_np.min()
|
| 891 |
+
__max = prediced_depth_map_np.max()
|
| 892 |
+
|
| 893 |
+
prediced_depth_map_np_normalized = (prediced_depth_map_np - __min) / (__max - __min)
|
| 894 |
+
color_predictions = [colorize_depth_map(item) for item in prediced_depth_map_np_normalized]
|
| 895 |
+
else:
|
| 896 |
+
color_predictions = processed_video
|
| 897 |
+
|
| 898 |
+
return_dict = {}
|
| 899 |
+
|
| 900 |
+
return_dict['depth_map'] = prediced_depth_map_np
|
| 901 |
+
return_dict['colored_depth_map'] = color_predictions
|
| 902 |
+
|
| 903 |
+
|
| 904 |
+
|
| 905 |
+
if vis_pc and prompt == 'depth':
|
| 906 |
+
vis_pc_num = 4
|
| 907 |
+
indices = np.linspace(0, frame_length-1, vis_pc_num)
|
| 908 |
+
indices = np.round(indices).astype(np.int32)
|
| 909 |
+
return_dict['point_clouds'] = self.prediction2pc(prediced_depth_map_np, origin_frames, indices)
|
| 910 |
+
|
| 911 |
+
if return_rgb:
|
| 912 |
+
return_dict['rgb_frames'] = origin_frames
|
| 913 |
+
return return_dict
|
| 914 |
+
|
| 915 |
+
|
| 916 |
+
|
| 917 |
+
|
| 918 |
+
|
| 919 |
+
def prediction2pc(self, prediction_depth_map, RGB_frames, indices, return_pcd = True,nb_neighbors = 20, std_ratio = 3.0):
|
| 920 |
+
resize_W,resize_H = RGB_frames[0].size
|
| 921 |
+
pcds = []
|
| 922 |
+
moge_device = self.moge_pipe.device if self.moge_pipe is not None else torch.device("cuda:0")
|
| 923 |
+
|
| 924 |
+
for idx in tqdm(indices):
|
| 925 |
+
orgin_rgb_frame = RGB_frames[idx]
|
| 926 |
+
predicted_depth = prediction_depth_map[idx]
|
| 927 |
+
|
| 928 |
+
# Read the input image and convert to tensor (3, H, W) with RGB values normalized to [0, 1]
|
| 929 |
+
input_image_np = np.array(orgin_rgb_frame) # Convert PIL Image to numpy array
|
| 930 |
+
input_image = torch.tensor(input_image_np / 255, dtype=torch.float32, device=moge_device).permute(2, 0, 1)
|
| 931 |
+
output = self.moge_pipe.infer(input_image)
|
| 932 |
+
|
| 933 |
+
#* "dict_keys(['points', 'intrinsics', 'depth', 'mask', 'normal'])"
|
| 934 |
+
moge_intrinsics = output['intrinsics'].cpu().numpy()
|
| 935 |
+
moge_mask = output['mask'].cpu().numpy()
|
| 936 |
+
moge_depth = output['depth'].cpu().numpy()
|
| 937 |
+
|
| 938 |
+
|
| 939 |
+
metric_depth = transfer_pred_disp2depth(predicted_depth, moge_depth, moge_mask)
|
| 940 |
+
|
| 941 |
+
moge_intrinsics[0, 0] *= resize_W
|
| 942 |
+
moge_intrinsics[1, 1] *= resize_H
|
| 943 |
+
moge_intrinsics[0, 2] *= resize_W
|
| 944 |
+
moge_intrinsics[1, 2] *= resize_H
|
| 945 |
+
|
| 946 |
+
pcd = depth2pcd(metric_depth, moge_intrinsics, color=input_image_np, input_mask=moge_mask, ret_pcd=return_pcd)
|
| 947 |
+
|
| 948 |
+
if return_pcd:
|
| 949 |
+
#* [15,50], [2,3]
|
| 950 |
+
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=nb_neighbors, std_ratio=std_ratio)
|
| 951 |
+
pcd = pcd.select_by_index(ind)
|
| 952 |
+
#todo downsample
|
| 953 |
+
|
| 954 |
+
pcds.append(pcd)
|
| 955 |
+
|
| 956 |
+
return pcds
|
| 957 |
+
|
| 958 |
+
|
| 959 |
+
|
| 960 |
+
|
| 961 |
+
@spaces.GPU()
|
| 962 |
+
@torch.inference_mode()
|
| 963 |
+
def moge_infer(self, input_image):
|
| 964 |
+
return self.moge_pipe.infer(input_image)
|
| 965 |
+
|
| 966 |
+
|
| 967 |
+
|
| 968 |
+
def prediction2pc_v2(self, prediction_depth_map, RGB_frames, indices, return_pcd = True,nb_neighbors = 20, std_ratio = 3.0):
|
| 969 |
+
"""
|
| 970 |
+
call MoGe once
|
| 971 |
+
"""
|
| 972 |
+
resize_W,resize_H = RGB_frames[0].size
|
| 973 |
+
pcds = []
|
| 974 |
+
moge_device = self.moge_pipe.device if self.moge_pipe is not None else torch.device("cuda:0")
|
| 975 |
+
|
| 976 |
+
for iidx, idx in enumerate(tqdm(indices)):
|
| 977 |
+
|
| 978 |
+
orgin_rgb_frame = RGB_frames[idx]
|
| 979 |
+
predicted_depth = prediction_depth_map[idx]
|
| 980 |
+
input_image_np = np.array(orgin_rgb_frame) # Convert PIL Image to numpy array
|
| 981 |
+
|
| 982 |
+
|
| 983 |
+
if iidx == 0:
|
| 984 |
+
# Read the input image and convert to tensor (3, H, W) with RGB values normalized to [0, 1]
|
| 985 |
+
input_image = torch.tensor(input_image_np / 255, dtype=torch.float32, device=moge_device).permute(2, 0, 1)
|
| 986 |
+
output = self.moge_infer(input_image)
|
| 987 |
+
|
| 988 |
+
#* "dict_keys(['points', 'intrinsics', 'depth', 'mask', 'normal'])"
|
| 989 |
+
moge_intrinsics = output['intrinsics'].cpu().numpy()
|
| 990 |
+
moge_mask = output['mask'].cpu().numpy()
|
| 991 |
+
moge_depth = output['depth'].cpu().numpy()
|
| 992 |
+
|
| 993 |
+
metric_depth, scale, shift = transfer_pred_disp2depth(predicted_depth, moge_depth, moge_mask, return_scale_shift=True)
|
| 994 |
+
|
| 995 |
+
moge_intrinsics[0, 0] *= resize_W
|
| 996 |
+
moge_intrinsics[1, 1] *= resize_H
|
| 997 |
+
moge_intrinsics[0, 2] *= resize_W
|
| 998 |
+
moge_intrinsics[1, 2] *= resize_H
|
| 999 |
+
else:
|
| 1000 |
+
metric_depth = transfer_pred_disp2depth_v2(predicted_depth, scale, shift)
|
| 1001 |
+
|
| 1002 |
+
|
| 1003 |
+
pcd = depth2pcd(metric_depth, moge_intrinsics, color=input_image_np, input_mask=moge_mask, ret_pcd=return_pcd)
|
| 1004 |
+
|
| 1005 |
+
if return_pcd:
|
| 1006 |
+
#* [15,50], [2,3]
|
| 1007 |
+
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=nb_neighbors, std_ratio=std_ratio)
|
| 1008 |
+
pcd = pcd.select_by_index(ind)
|
| 1009 |
+
#todo downsample
|
| 1010 |
+
|
| 1011 |
+
pcds.append(pcd)
|
| 1012 |
+
|
| 1013 |
+
return pcds
|
| 1014 |
+
|
| 1015 |
+
|
| 1016 |
+
|
| 1017 |
+
|
| 1018 |
+
|
| 1019 |
+
|
| 1020 |
+
|
| 1021 |
+
|
| 1022 |
+
|
| 1023 |
+
|
| 1024 |
+
|
| 1025 |
+
|
| 1026 |
+
|
| 1027 |
+
|
| 1028 |
+
|
| 1029 |
+
|
| 1030 |
+
|
| 1031 |
+
|
| 1032 |
+
|
| 1033 |
+
|
| 1034 |
+
|
| 1035 |
+
|
| 1036 |
|
| 1037 |
|
| 1038 |
|
|
|
|
| 1797 |
|
| 1798 |
#* unpatchify, from [1, ( (F-1)/4 * H/16 * W/16), 64] to [1, 16, (F-1)/4, H/8, W/8]
|
| 1799 |
x = dit.unpatchify(x, (f, h, w))
|
| 1800 |
+
return x
|
|
|
|
|
|
|
|
|