Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
d823b65
1
Parent(s):
4ef344d
app.py
CHANGED
|
@@ -396,293 +396,290 @@ def process_video(
|
|
| 396 |
|
| 397 |
|
| 398 |
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
"""
|
| 498 |
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
"""
|
| 507 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
-
|
| 510 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
|
| 512 |
-
# with gr.Blocks(css=css, title="DKT - Diffusion Knows Transparency", favicon_path="favicon.ico") as demo:
|
| 513 |
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 530 |
|
|
|
|
|
|
|
| 531 |
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
# gr.Markdown("### Video Processing Demo", elem_classes=["description"])
|
| 545 |
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
choices=["1.3B", "14B"],
|
| 552 |
-
value="1.3B",
|
| 553 |
-
label="Model Size"
|
| 554 |
-
)
|
| 555 |
|
|
|
|
|
|
|
|
|
|
| 556 |
|
| 557 |
-
with gr.Accordion("Advanced Parameters", open=False):
|
| 558 |
-
num_inference_steps = gr.Slider(
|
| 559 |
-
minimum=1, maximum=50, value=5, step=1,
|
| 560 |
-
label="Number of Inference Steps"
|
| 561 |
-
)
|
| 562 |
-
overlap = gr.Slider(
|
| 563 |
-
minimum=1, maximum=20, value=3, step=1,
|
| 564 |
-
label="Overlap"
|
| 565 |
-
)
|
| 566 |
-
|
| 567 |
-
submit = gr.Button(value="Compute Depth", variant="primary")
|
| 568 |
|
| 569 |
-
with gr.Column():
|
| 570 |
-
output_video = gr.Video(
|
| 571 |
-
label="Depth Outputs",
|
| 572 |
-
elem_id='video-display-output',
|
| 573 |
-
autoplay=True
|
| 574 |
-
)
|
| 575 |
-
vis_video = gr.Video(
|
| 576 |
-
label="Visualization Video",
|
| 577 |
-
visible=False,
|
| 578 |
-
autoplay=True
|
| 579 |
-
)
|
| 580 |
-
|
| 581 |
-
with gr.Row():
|
| 582 |
-
gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
|
| 583 |
-
|
| 584 |
-
with gr.Row(equal_height=True):
|
| 585 |
-
with gr.Column(scale=1):
|
| 586 |
-
output_point_map0 = LitModel3D(
|
| 587 |
-
label="Point Cloud Key Frame 1",
|
| 588 |
-
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 589 |
-
interactive=False,
|
| 590 |
-
# height=400,
|
| 591 |
-
|
| 592 |
-
)
|
| 593 |
-
with gr.Column(scale=1):
|
| 594 |
-
output_point_map1 = LitModel3D(
|
| 595 |
-
label="Point Cloud Key Frame 2",
|
| 596 |
-
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 597 |
-
interactive=False
|
| 598 |
-
)
|
| 599 |
|
| 600 |
-
|
| 601 |
-
|
| 602 |
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
)
|
| 609 |
-
with gr.Column(scale=1):
|
| 610 |
-
output_point_map3 = LitModel3D(
|
| 611 |
-
label="Point Cloud Key Frame 4",
|
| 612 |
-
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 613 |
-
interactive=False
|
| 614 |
-
)
|
| 615 |
-
|
| 616 |
-
def on_submit(video_file, model_size, num_inference_steps, overlap):
|
| 617 |
-
if video_file is None:
|
| 618 |
-
return None, None, None, None, None, None, "Please upload a video file"
|
| 619 |
|
| 620 |
-
try:
|
| 621 |
|
| 622 |
-
output_path, glb_files = process_video(
|
| 623 |
-
video_file, model_size, height, width, num_inference_steps, window_size, overlap
|
| 624 |
-
)
|
| 625 |
|
|
|
|
| 626 |
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
model3d_outputs = [None] * 4
|
| 632 |
-
if glb_files:
|
| 633 |
-
for i, glb_file in enumerate(glb_files[:4]):
|
| 634 |
-
if os.path.exists(glb_file):
|
| 635 |
-
model3d_outputs[i] = glb_file
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
return output_path, None, *model3d_outputs
|
| 640 |
-
|
| 641 |
-
except Exception as e:
|
| 642 |
-
return None, None, None, None, None, None, f"Error: {str(e)}"
|
| 643 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 644 |
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
inputs=[
|
| 648 |
-
input_video, model_size, num_inference_steps, overlap
|
| 649 |
-
],
|
| 650 |
outputs=[
|
| 651 |
output_video, vis_video,
|
| 652 |
output_point_map0, output_point_map1, output_point_map2, output_point_map3
|
| 653 |
-
]
|
|
|
|
|
|
|
| 654 |
)
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
example_files = glob.glob('examples/*')
|
| 659 |
-
if example_files:
|
| 660 |
-
example_inputs = []
|
| 661 |
-
for file_path in example_files:
|
| 662 |
-
example_inputs.append([file_path, "1.3B", 5, 3])
|
| 663 |
-
|
| 664 |
-
examples = gr.Examples(
|
| 665 |
-
examples=example_inputs,
|
| 666 |
-
inputs=[input_video, model_size, num_inference_steps, overlap],
|
| 667 |
-
outputs=[
|
| 668 |
-
output_video, vis_video,
|
| 669 |
-
output_point_map0, output_point_map1, output_point_map2, output_point_map3
|
| 670 |
-
],
|
| 671 |
-
fn=on_submit,
|
| 672 |
-
examples_per_page=6
|
| 673 |
-
)
|
| 674 |
|
| 675 |
|
|
|
|
|
|
|
| 676 |
#* main code, model and moge model initialization
|
| 677 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 678 |
load_model_1_3b(device=device)
|
| 679 |
load_moge_model(device=device)
|
| 680 |
torch.cuda.empty_cache()
|
| 681 |
|
| 682 |
-
demo.queue().launch(share =
|
| 683 |
|
| 684 |
|
| 685 |
-
if __name__ == '__main__':
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
main()
|
|
|
|
| 396 |
|
| 397 |
|
| 398 |
|
| 399 |
+
#* gradio creation and initialization
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
css = """
|
| 403 |
+
#video-display-container {
|
| 404 |
+
max-height: 100vh;
|
| 405 |
+
}
|
| 406 |
+
#video-display-input {
|
| 407 |
+
max-height: 80vh;
|
| 408 |
+
}
|
| 409 |
+
#video-display-output {
|
| 410 |
+
max-height: 80vh;
|
| 411 |
+
}
|
| 412 |
+
#download {
|
| 413 |
+
height: 62px;
|
| 414 |
+
}
|
| 415 |
+
.title {
|
| 416 |
+
text-align: center;
|
| 417 |
+
}
|
| 418 |
+
.description {
|
| 419 |
+
text-align: center;
|
| 420 |
+
}
|
| 421 |
+
.gradio-examples {
|
| 422 |
+
max-height: 400px;
|
| 423 |
+
overflow-y: auto;
|
| 424 |
+
}
|
| 425 |
+
.gradio-examples .examples-container {
|
| 426 |
+
display: grid;
|
| 427 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
| 428 |
+
gap: 10px;
|
| 429 |
+
padding: 10px;
|
| 430 |
+
}
|
| 431 |
+
.gradio-container .gradio-examples .pagination,
|
| 432 |
+
.gradio-container .gradio-examples .pagination button,
|
| 433 |
+
div[data-testid="examples"] .pagination,
|
| 434 |
+
div[data-testid="examples"] .pagination button {
|
| 435 |
+
font-size: 28px !important;
|
| 436 |
+
font-weight: bold !important;
|
| 437 |
+
padding: 15px 20px !important;
|
| 438 |
+
min-width: 60px !important;
|
| 439 |
+
height: 60px !important;
|
| 440 |
+
border-radius: 10px !important;
|
| 441 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 442 |
+
color: white !important;
|
| 443 |
+
border: none !important;
|
| 444 |
+
cursor: pointer !important;
|
| 445 |
+
margin: 8px !important;
|
| 446 |
+
display: inline-block !important;
|
| 447 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
|
| 448 |
+
transition: all 0.3s ease !important;
|
| 449 |
+
}
|
| 450 |
+
|
| 451 |
+
div[data-testid="examples"] .pagination button:not(.active),
|
| 452 |
+
.gradio-container .gradio-examples .pagination button:not(.active) {
|
| 453 |
+
font-size: 32px !important;
|
| 454 |
+
font-weight: bold !important;
|
| 455 |
+
padding: 15px 20px !important;
|
| 456 |
+
min-width: 60px !important;
|
| 457 |
+
height: 60px !important;
|
| 458 |
+
background: linear-gradient(135deg, #8a9cf0 0%, #9a6bb2 100%) !important;
|
| 459 |
+
opacity: 0.8 !important;
|
| 460 |
+
}
|
| 461 |
+
|
| 462 |
+
div[data-testid="examples"] .pagination button:hover,
|
| 463 |
+
.gradio-container .gradio-examples .pagination button:hover {
|
| 464 |
+
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%) !important;
|
| 465 |
+
transform: translateY(-2px) !important;
|
| 466 |
+
box-shadow: 0 6px 12px rgba(0,0,0,0.3) !important;
|
| 467 |
+
opacity: 1 !important;
|
| 468 |
+
}
|
| 469 |
+
|
| 470 |
+
div[data-testid="examples"] .pagination button.active,
|
| 471 |
+
.gradio-container .gradio-examples .pagination button.active {
|
| 472 |
+
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%) !important;
|
| 473 |
+
box-shadow: 0 4px 8px rgba(17,153,142,0.4) !important;
|
| 474 |
+
opacity: 1 !important;
|
| 475 |
+
}
|
| 476 |
+
|
| 477 |
+
button[class*="pagination"],
|
| 478 |
+
button[class*="page"] {
|
| 479 |
+
font-size: 28px !important;
|
| 480 |
+
font-weight: bold !important;
|
| 481 |
+
padding: 15px 20px !important;
|
| 482 |
+
min-width: 60px !important;
|
| 483 |
+
height: 60px !important;
|
| 484 |
+
border-radius: 10px !important;
|
| 485 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 486 |
+
color: white !important;
|
| 487 |
+
border: none !important;
|
| 488 |
+
cursor: pointer !important;
|
| 489 |
+
margin: 8px !important;
|
| 490 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
|
| 491 |
+
transition: all 0.3s ease !important;
|
| 492 |
+
}
|
| 493 |
+
"""
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
head_html = """
|
| 498 |
+
<link rel="icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
|
| 499 |
+
<link rel="shortcut icon" type="image/svg+xml" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
|
| 500 |
+
<link rel="icon" type="image/png" href="data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 100 100'%3E%3Ctext y='.9em' font-size='90'%3E🦾%3C/text%3E%3C/svg%3E">
|
| 501 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 502 |
+
"""
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
# description = """Official demo for **DKT **."""
|
| 507 |
+
|
| 508 |
+
# with gr.Blocks(css=css, title="DKT - Diffusion Knows Transparency", favicon_path="favicon.ico") as demo:
|
| 509 |
+
|
| 510 |
+
height = 480
|
| 511 |
+
width = 832
|
| 512 |
+
window_size = 21
|
| 513 |
+
with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
|
| 514 |
+
# gr.Markdown(title, elem_classes=["title"])
|
| 515 |
"""
|
| 516 |
|
| 517 |
+
<a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 518 |
+
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
| 519 |
+
</a>
|
| 520 |
+
<a title="arXiv" href="https://arxiv.org/abs/2406.16864" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 521 |
+
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
| 522 |
+
</a>
|
| 523 |
+
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 524 |
+
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
| 525 |
+
</a>
|
| 526 |
+
|
| 527 |
+
|
| 528 |
"""
|
| 529 |
|
| 530 |
+
gr.Markdown(
|
| 531 |
+
"""
|
| 532 |
+
# Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation
|
| 533 |
+
<p align="center">
|
| 534 |
+
<a title="Github" href="https://github.com/Daniellli/DKT" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 535 |
+
<img src="https://img.shields.io/github/stars/Daniellli/DKT?style=social" alt="badge-github-stars">
|
| 536 |
+
</a>
|
| 537 |
+
"""
|
| 538 |
+
)
|
| 539 |
+
# gr.Markdown(description, elem_classes=["description"])
|
| 540 |
+
# gr.Markdown("### Video Processing Demo", elem_classes=["description"])
|
| 541 |
|
| 542 |
+
with gr.Row():
|
| 543 |
+
with gr.Column():
|
| 544 |
+
input_video = gr.Video(label="Input Video", elem_id='video-display-input')
|
| 545 |
+
|
| 546 |
+
model_size = gr.Radio(
|
| 547 |
+
choices=["1.3B", "14B"],
|
| 548 |
+
value="1.3B",
|
| 549 |
+
label="Model Size"
|
| 550 |
+
)
|
| 551 |
|
|
|
|
| 552 |
|
| 553 |
+
with gr.Accordion("Advanced Parameters", open=False):
|
| 554 |
+
num_inference_steps = gr.Slider(
|
| 555 |
+
minimum=1, maximum=50, value=5, step=1,
|
| 556 |
+
label="Number of Inference Steps"
|
| 557 |
+
)
|
| 558 |
+
overlap = gr.Slider(
|
| 559 |
+
minimum=1, maximum=20, value=3, step=1,
|
| 560 |
+
label="Overlap"
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
submit = gr.Button(value="Compute Depth", variant="primary")
|
| 564 |
+
|
| 565 |
+
with gr.Column():
|
| 566 |
+
output_video = gr.Video(
|
| 567 |
+
label="Depth Outputs",
|
| 568 |
+
elem_id='video-display-output',
|
| 569 |
+
autoplay=True
|
| 570 |
+
)
|
| 571 |
+
vis_video = gr.Video(
|
| 572 |
+
label="Visualization Video",
|
| 573 |
+
visible=False,
|
| 574 |
+
autoplay=True
|
| 575 |
+
)
|
| 576 |
|
| 577 |
+
with gr.Row():
|
| 578 |
+
gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
|
| 579 |
+
|
| 580 |
+
with gr.Row(equal_height=True):
|
| 581 |
+
with gr.Column(scale=1):
|
| 582 |
+
output_point_map0 = LitModel3D(
|
| 583 |
+
label="Point Cloud Key Frame 1",
|
| 584 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 585 |
+
interactive=False,
|
| 586 |
+
# height=400,
|
| 587 |
+
|
| 588 |
+
)
|
| 589 |
+
with gr.Column(scale=1):
|
| 590 |
+
output_point_map1 = LitModel3D(
|
| 591 |
+
label="Point Cloud Key Frame 2",
|
| 592 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 593 |
+
interactive=False
|
| 594 |
+
)
|
| 595 |
|
| 596 |
+
|
| 597 |
+
with gr.Row(equal_height=True):
|
| 598 |
|
| 599 |
+
with gr.Column(scale=1):
|
| 600 |
+
output_point_map2 = LitModel3D(
|
| 601 |
+
label="Point Cloud Key Frame 3",
|
| 602 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 603 |
+
interactive=False
|
| 604 |
+
)
|
| 605 |
+
with gr.Column(scale=1):
|
| 606 |
+
output_point_map3 = LitModel3D(
|
| 607 |
+
label="Point Cloud Key Frame 4",
|
| 608 |
+
clear_color=[1.0, 1.0, 1.0, 1.0],
|
| 609 |
+
interactive=False
|
| 610 |
+
)
|
|
|
|
| 611 |
|
| 612 |
+
def on_submit(video_file, model_size, num_inference_steps, overlap):
|
| 613 |
+
if video_file is None:
|
| 614 |
+
return None, None, None, None, None, None, "Please upload a video file"
|
| 615 |
+
|
| 616 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 617 |
|
| 618 |
+
output_path, glb_files = process_video(
|
| 619 |
+
video_file, model_size, height, width, num_inference_steps, window_size, overlap
|
| 620 |
+
)
|
| 621 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 623 |
|
| 624 |
+
if output_path is None:
|
| 625 |
+
return None, None, None, None, None, None, glb_files
|
| 626 |
|
| 627 |
+
model3d_outputs = [None] * 4
|
| 628 |
+
if glb_files:
|
| 629 |
+
for i, glb_file in enumerate(glb_files[:4]):
|
| 630 |
+
if os.path.exists(glb_file):
|
| 631 |
+
model3d_outputs[i] = glb_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 632 |
|
|
|
|
| 633 |
|
|
|
|
|
|
|
|
|
|
| 634 |
|
| 635 |
+
return output_path, None, *model3d_outputs
|
| 636 |
|
| 637 |
+
except Exception as e:
|
| 638 |
+
logger.error(e)
|
| 639 |
+
return None, None, None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 640 |
|
| 641 |
+
|
| 642 |
+
submit.click(
|
| 643 |
+
on_submit,
|
| 644 |
+
inputs=[
|
| 645 |
+
input_video, model_size, num_inference_steps, overlap
|
| 646 |
+
],
|
| 647 |
+
outputs=[
|
| 648 |
+
output_video, vis_video,
|
| 649 |
+
output_point_map0, output_point_map1, output_point_map2, output_point_map3
|
| 650 |
+
]
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
example_files = glob.glob('examples/*')
|
| 656 |
+
logger.info(f'there are {len(example_files)} demo files')
|
| 657 |
+
if example_files:
|
| 658 |
+
example_inputs = []
|
| 659 |
+
for file_path in example_files:
|
| 660 |
+
example_inputs.append([file_path, "1.3B", 5, 3])
|
| 661 |
|
| 662 |
+
examples = gr.Examples(
|
| 663 |
+
examples=example_inputs,
|
| 664 |
+
inputs=[input_video, model_size, num_inference_steps, overlap],
|
|
|
|
|
|
|
| 665 |
outputs=[
|
| 666 |
output_video, vis_video,
|
| 667 |
output_point_map0, output_point_map1, output_point_map2, output_point_map3
|
| 668 |
+
],
|
| 669 |
+
fn=on_submit,
|
| 670 |
+
examples_per_page=6
|
| 671 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 672 |
|
| 673 |
|
| 674 |
+
if __name__ == '__main__':
|
| 675 |
+
|
| 676 |
#* main code, model and moge model initialization
|
| 677 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 678 |
+
logger.info(f"device = {device}")
|
| 679 |
load_model_1_3b(device=device)
|
| 680 |
load_moge_model(device=device)
|
| 681 |
torch.cuda.empty_cache()
|
| 682 |
|
| 683 |
+
demo.queue().launch(share = False,server_name="0.0.0.0", server_port=7860)
|
| 684 |
|
| 685 |
|
|
|
|
|
|
|
|
|
|
|
|