import torch class GeneralLoRALoader: def __init__(self, device="cpu", torch_dtype=torch.float32): self.device = device self.torch_dtype = torch_dtype def get_name_dict(self, lora_state_dict): lora_name_dict = {} for key in lora_state_dict: if ".lora_B." not in key: continue keys = key.split(".") if len(keys) > keys.index("lora_B") + 2: keys.pop(keys.index("lora_B") + 1) keys.pop(keys.index("lora_B")) if keys[0] == "diffusion_model": keys.pop(0) keys.pop(-1) target_name = ".".join(keys) lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A.")) return lora_name_dict def load(self, model: torch.nn.Module, state_dict_lora, alpha=1.0): updated_num = 0 lora_name_dict = self.get_name_dict(state_dict_lora) for name, module in model.named_modules(): if name in lora_name_dict: weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=self.device, dtype=self.torch_dtype) weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=self.device, dtype=self.torch_dtype) if len(weight_up.shape) == 4: weight_up = weight_up.squeeze(3).squeeze(2) weight_down = weight_down.squeeze(3).squeeze(2) weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) else: weight_lora = alpha * torch.mm(weight_up, weight_down) state_dict = module.state_dict() state_dict["weight"] = state_dict["weight"].to(device=self.device, dtype=self.torch_dtype) + weight_lora module.load_state_dict(state_dict) updated_num += 1 print(f"{updated_num} tensors are updated by LoRA.")