import torch, copy from typing import Union from ..models.utils import init_weights_on_device def cast_to(weight, dtype, device): r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight) return r class AutoTorchModule(torch.nn.Module): def __init__(self): super().__init__() def check_free_vram(self): gpu_mem_state = torch.cuda.mem_get_info(self.computation_device) used_memory = (gpu_mem_state[1] - gpu_mem_state[0]) / (1024 ** 3) return used_memory < self.vram_limit def offload(self): if self.state != 0: self.to(dtype=self.offload_dtype, device=self.offload_device) self.state = 0 def onload(self): if self.state != 1: self.to(dtype=self.onload_dtype, device=self.onload_device) self.state = 1 def keep(self): if self.state != 2: self.to(dtype=self.computation_dtype, device=self.computation_device) self.state = 2 class AutoWrappedModule(AutoTorchModule): def __init__(self, module: torch.nn.Module, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, **kwargs): super().__init__() self.module = module.to(dtype=offload_dtype, device=offload_device) self.offload_dtype = offload_dtype self.offload_device = offload_device self.onload_dtype = onload_dtype self.onload_device = onload_device self.computation_dtype = computation_dtype self.computation_device = computation_device self.vram_limit = vram_limit self.state = 0 def forward(self, *args, **kwargs): if self.state == 2: module = self.module else: if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: module = self.module elif self.vram_limit is not None and self.check_free_vram(): self.keep() module = self.module else: module = copy.deepcopy(self.module).to(dtype=self.computation_dtype, device=self.computation_device) return module(*args, **kwargs) class WanAutoCastLayerNorm(torch.nn.LayerNorm, AutoTorchModule): def __init__(self, module: torch.nn.LayerNorm, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, **kwargs): with init_weights_on_device(device=torch.device("meta")): super().__init__(module.normalized_shape, eps=module.eps, elementwise_affine=module.elementwise_affine, bias=module.bias is not None, dtype=offload_dtype, device=offload_device) self.weight = module.weight self.bias = module.bias self.offload_dtype = offload_dtype self.offload_device = offload_device self.onload_dtype = onload_dtype self.onload_device = onload_device self.computation_dtype = computation_dtype self.computation_device = computation_device self.vram_limit = vram_limit self.state = 0 def forward(self, x, *args, **kwargs): if self.state == 2: weight, bias = self.weight, self.bias else: if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: weight, bias = self.weight, self.bias elif self.vram_limit is not None and self.check_free_vram(): self.keep() weight, bias = self.weight, self.bias else: weight = None if self.weight is None else cast_to(self.weight, self.computation_dtype, self.computation_device) bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device) with torch.amp.autocast(device_type=x.device.type): x = torch.nn.functional.layer_norm(x.float(), self.normalized_shape, weight, bias, self.eps).type_as(x) return x class AutoWrappedLinear(torch.nn.Linear, AutoTorchModule): def __init__(self, module: torch.nn.Linear, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device, vram_limit, name="", **kwargs): with init_weights_on_device(device=torch.device("meta")): super().__init__(in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, dtype=offload_dtype, device=offload_device) self.weight = module.weight self.bias = module.bias self.offload_dtype = offload_dtype self.offload_device = offload_device self.onload_dtype = onload_dtype self.onload_device = onload_device self.computation_dtype = computation_dtype self.computation_device = computation_device self.vram_limit = vram_limit self.state = 0 self.name = name self.lora_A_weights = [] self.lora_B_weights = [] self.lora_merger = None self.enable_fp8 = computation_dtype in [torch.float8_e4m3fn, torch.float8_e4m3fnuz] def fp8_linear( self, input: torch.Tensor, weight: torch.Tensor, bias: Union[torch.Tensor, None] = None): device = input.device origin_dtype = input.dtype origin_shape = input.shape input = input.reshape(-1, origin_shape[-1]) x_max = torch.max(torch.abs(input), dim=-1, keepdim=True).values fp8_max = 448.0 # For float8_e4m3fnuz, the maximum representable value is half of that of e4m3fn. # To avoid overflow and ensure numerical compatibility during FP8 computation, # we scale down the input by 2.0 in advance. # This scaling will be compensated later during the final result scaling. if self.computation_dtype == torch.float8_e4m3fnuz: fp8_max = fp8_max / 2.0 scale_a = torch.clamp(x_max / fp8_max, min=1.0).float().to(device=device) scale_b = torch.ones((weight.shape[0], 1)).to(device=device) input = input / (scale_a + 1e-8) input = input.to(self.computation_dtype) weight = weight.to(self.computation_dtype) bias = bias.to(torch.bfloat16) result = torch._scaled_mm( input, weight.T, scale_a=scale_a, scale_b=scale_b.T, bias=bias, out_dtype=origin_dtype, ) new_shape = origin_shape[:-1] + result.shape[-1:] result = result.reshape(new_shape) return result def forward(self, x, *args, **kwargs): # VRAM management if self.state == 2: weight, bias = self.weight, self.bias else: if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: weight, bias = self.weight, self.bias elif self.vram_limit is not None and self.check_free_vram(): self.keep() weight, bias = self.weight, self.bias else: weight = cast_to(self.weight, self.computation_dtype, self.computation_device) bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device) # Linear forward if self.enable_fp8: out = self.fp8_linear(x, weight, bias) else: out = torch.nn.functional.linear(x, weight, bias) # LoRA if len(self.lora_A_weights) == 0: # No LoRA return out elif self.lora_merger is None: # Native LoRA inference for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights): out = out + x @ lora_A.T @ lora_B.T else: # LoRA fusion lora_output = [] for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights): lora_output.append(x @ lora_A.T @ lora_B.T) lora_output = torch.stack(lora_output) out = self.lora_merger(out, lora_output) return out def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0, vram_limit=None, name_prefix=""): for name, module in model.named_children(): layer_name = name if name_prefix == "" else name_prefix + "." + name for source_module, target_module in module_map.items(): if isinstance(module, source_module): num_param = sum(p.numel() for p in module.parameters()) if max_num_param is not None and total_num_param + num_param > max_num_param: module_config_ = overflow_module_config else: module_config_ = module_config module_ = target_module(module, **module_config_, vram_limit=vram_limit, name=layer_name) setattr(model, name, module_) total_num_param += num_param break else: total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param, vram_limit=vram_limit, name_prefix=layer_name) return total_num_param def enable_vram_management(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, vram_limit=None): enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0, vram_limit=vram_limit) model.vram_management_enabled = True