test panel
Browse files
panel_app/convert_to_excel_panel.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
from typing import Iterable, Sequence
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def write_dfs_to_excel(
|
| 8 |
+
dfs: Sequence[pd.DataFrame], sheet_names: Sequence[str], index: bool = True
|
| 9 |
+
) -> bytes:
|
| 10 |
+
"""Simple Excel export for Panel.
|
| 11 |
+
|
| 12 |
+
Writes the given DataFrames to an in-memory XLSX file and returns the bytes.
|
| 13 |
+
No Streamlit dependency and no heavy formatting, to keep Panel exports fast
|
| 14 |
+
and avoid Streamlit runtime warnings.
|
| 15 |
+
"""
|
| 16 |
+
bytes_io = io.BytesIO()
|
| 17 |
+
with pd.ExcelWriter(bytes_io, engine="xlsxwriter") as writer:
|
| 18 |
+
for df, name in zip(dfs, sheet_names):
|
| 19 |
+
# Ensure we always write a valid DataFrame, even if None was passed
|
| 20 |
+
safe_df = df if isinstance(df, pd.DataFrame) else pd.DataFrame()
|
| 21 |
+
safe_df.to_excel(writer, sheet_name=str(name), index=index)
|
| 22 |
+
|
| 23 |
+
return bytes_io.getvalue()
|
panel_app/trafic_analysis_panel.py
ADDED
|
@@ -0,0 +1,2331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import zipfile
|
| 5 |
+
from datetime import date, timedelta
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import panel as pn
|
| 10 |
+
import plotly.express as px
|
| 11 |
+
|
| 12 |
+
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 13 |
+
if ROOT_DIR not in sys.path:
|
| 14 |
+
sys.path.insert(0, ROOT_DIR)
|
| 15 |
+
|
| 16 |
+
from panel_app.convert_to_excel_panel import write_dfs_to_excel
|
| 17 |
+
from utils.utils_vars import get_physical_db
|
| 18 |
+
|
| 19 |
+
pn.extension("plotly", "tabulator")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def read_fileinput_to_df(file_input: pn.widgets.FileInput) -> pd.DataFrame | None:
|
| 23 |
+
"""Read a Panel FileInput (ZIP or CSV) into a DataFrame.
|
| 24 |
+
|
| 25 |
+
Returns None if no file is provided.
|
| 26 |
+
"""
|
| 27 |
+
if file_input is None or not file_input.value:
|
| 28 |
+
return None
|
| 29 |
+
|
| 30 |
+
filename = (file_input.filename or "").lower()
|
| 31 |
+
data = io.BytesIO(file_input.value)
|
| 32 |
+
|
| 33 |
+
if filename.endswith(".zip"):
|
| 34 |
+
with zipfile.ZipFile(data) as z:
|
| 35 |
+
csv_files = [f for f in z.namelist() if f.lower().endswith(".csv")]
|
| 36 |
+
if not csv_files:
|
| 37 |
+
raise ValueError("No CSV file found in the ZIP archive")
|
| 38 |
+
with z.open(csv_files[0]) as f:
|
| 39 |
+
return pd.read_csv(f, encoding="latin1", sep=";", low_memory=False)
|
| 40 |
+
elif filename.endswith(".csv"):
|
| 41 |
+
return pd.read_csv(data, encoding="latin1", sep=";", low_memory=False)
|
| 42 |
+
else:
|
| 43 |
+
raise ValueError("Unsupported file format. Please upload a ZIP or CSV file.")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def extract_code(name):
|
| 47 |
+
name = name.replace(" ", "_") if isinstance(name, str) else None
|
| 48 |
+
if name and len(name) >= 10:
|
| 49 |
+
try:
|
| 50 |
+
return int(name.split("_")[0])
|
| 51 |
+
except ValueError:
|
| 52 |
+
return None
|
| 53 |
+
return None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def preprocess_2g(df: pd.DataFrame) -> pd.DataFrame:
|
| 57 |
+
df = df[df["BCF name"].str.len() >= 10].copy()
|
| 58 |
+
df["2g_data_trafic"] = ((df["TRAFFIC_PS DL"] + df["PS_UL_Load"]) / 1000).round(1)
|
| 59 |
+
df.rename(columns={"2G_Carried Traffic": "2g_voice_trafic"}, inplace=True)
|
| 60 |
+
df["code"] = df["BCF name"].apply(extract_code)
|
| 61 |
+
df["code"] = pd.to_numeric(df["code"], errors="coerce")
|
| 62 |
+
df = df[df["code"].notna()]
|
| 63 |
+
df["code"] = df["code"].astype(int)
|
| 64 |
+
date_format = (
|
| 65 |
+
"%m.%d.%Y %H:%M:%S" if len(df["PERIOD_START_TIME"].iat[0]) > 10 else "%m.%d.%Y"
|
| 66 |
+
)
|
| 67 |
+
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format=date_format)
|
| 68 |
+
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
|
| 69 |
+
|
| 70 |
+
if "TCH availability ratio" in df.columns:
|
| 71 |
+
df["2g_tch_avail"] = pd.to_numeric(
|
| 72 |
+
df["TCH availability ratio"], errors="coerce"
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
agg_dict = {
|
| 76 |
+
"2g_data_trafic": "sum",
|
| 77 |
+
"2g_voice_trafic": "sum",
|
| 78 |
+
}
|
| 79 |
+
if "2g_tch_avail" in df.columns:
|
| 80 |
+
agg_dict["2g_tch_avail"] = "mean"
|
| 81 |
+
|
| 82 |
+
df = df.groupby(["date", "ID", "code"], as_index=False).agg(agg_dict)
|
| 83 |
+
return df
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def preprocess_3g(df: pd.DataFrame) -> pd.DataFrame:
|
| 87 |
+
df = df[df["WBTS name"].str.len() >= 10].copy()
|
| 88 |
+
df["code"] = df["WBTS name"].apply(extract_code)
|
| 89 |
+
df["code"] = pd.to_numeric(df["code"], errors="coerce")
|
| 90 |
+
df = df[df["code"].notna()]
|
| 91 |
+
df["code"] = df["code"].astype(int)
|
| 92 |
+
date_format = (
|
| 93 |
+
"%m.%d.%Y %H:%M:%S" if len(df["PERIOD_START_TIME"].iat[0]) > 10 else "%m.%d.%Y"
|
| 94 |
+
)
|
| 95 |
+
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format=date_format)
|
| 96 |
+
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
|
| 97 |
+
df.rename(
|
| 98 |
+
columns={
|
| 99 |
+
"Total CS traffic - Erl": "3g_voice_trafic",
|
| 100 |
+
"Total_Data_Traffic": "3g_data_trafic",
|
| 101 |
+
},
|
| 102 |
+
inplace=True,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
kpi_col = None
|
| 106 |
+
for col in df.columns:
|
| 107 |
+
if "cell availability" in str(col).lower():
|
| 108 |
+
kpi_col = col
|
| 109 |
+
break
|
| 110 |
+
|
| 111 |
+
if kpi_col is not None:
|
| 112 |
+
df["3g_cell_avail"] = pd.to_numeric(df[kpi_col], errors="coerce")
|
| 113 |
+
|
| 114 |
+
agg_dict = {
|
| 115 |
+
"3g_voice_trafic": "sum",
|
| 116 |
+
"3g_data_trafic": "sum",
|
| 117 |
+
}
|
| 118 |
+
if "3g_cell_avail" in df.columns:
|
| 119 |
+
agg_dict["3g_cell_avail"] = "mean"
|
| 120 |
+
|
| 121 |
+
df = df.groupby(["date", "ID", "code"], as_index=False).agg(agg_dict)
|
| 122 |
+
return df
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def preprocess_lte(df: pd.DataFrame) -> pd.DataFrame:
|
| 126 |
+
df = df[df["LNBTS name"].str.len() >= 10].copy()
|
| 127 |
+
df["lte_data_trafic"] = (
|
| 128 |
+
df["4G/LTE DL Traffic Volume (GBytes)"]
|
| 129 |
+
+ df["4G/LTE UL Traffic Volume (GBytes)"]
|
| 130 |
+
)
|
| 131 |
+
df["code"] = df["LNBTS name"].apply(extract_code)
|
| 132 |
+
df["code"] = pd.to_numeric(df["code"], errors="coerce")
|
| 133 |
+
df = df[df["code"].notna()]
|
| 134 |
+
df["code"] = df["code"].astype(int)
|
| 135 |
+
date_format = (
|
| 136 |
+
"%m.%d.%Y %H:%M:%S" if len(df["PERIOD_START_TIME"].iat[0]) > 10 else "%m.%d.%Y"
|
| 137 |
+
)
|
| 138 |
+
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format=date_format)
|
| 139 |
+
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
|
| 140 |
+
if "Cell Avail excl BLU" in df.columns:
|
| 141 |
+
df["lte_cell_avail"] = pd.to_numeric(df["Cell Avail excl BLU"], errors="coerce")
|
| 142 |
+
|
| 143 |
+
agg_dict = {"lte_data_trafic": "sum"}
|
| 144 |
+
if "lte_cell_avail" in df.columns:
|
| 145 |
+
agg_dict["lte_cell_avail"] = "mean"
|
| 146 |
+
|
| 147 |
+
df = df.groupby(["date", "ID", "code"], as_index=False).agg(agg_dict)
|
| 148 |
+
return df
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def merge_and_compare(df_2g, df_3g, df_lte, pre_range, post_range, last_period_range):
|
| 152 |
+
physical_db = get_physical_db()
|
| 153 |
+
physical_db["code"] = physical_db["Code_Sector"].str.split("_").str[0]
|
| 154 |
+
physical_db["code"] = (
|
| 155 |
+
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
|
| 156 |
+
)
|
| 157 |
+
physical_db = physical_db[["code", "Longitude", "Latitude", "City"]]
|
| 158 |
+
physical_db = physical_db.drop_duplicates(subset="code")
|
| 159 |
+
|
| 160 |
+
df = pd.merge(df_2g, df_3g, on=["date", "ID", "code"], how="outer")
|
| 161 |
+
df = pd.merge(df, df_lte, on=["date", "ID", "code"], how="outer")
|
| 162 |
+
|
| 163 |
+
for col in [
|
| 164 |
+
"2g_data_trafic",
|
| 165 |
+
"2g_voice_trafic",
|
| 166 |
+
"3g_voice_trafic",
|
| 167 |
+
"3g_data_trafic",
|
| 168 |
+
"lte_data_trafic",
|
| 169 |
+
]:
|
| 170 |
+
if col not in df:
|
| 171 |
+
df[col] = 0
|
| 172 |
+
|
| 173 |
+
kpi_masks = {}
|
| 174 |
+
for kpi_col in ["2g_tch_avail", "3g_cell_avail", "lte_cell_avail"]:
|
| 175 |
+
if kpi_col in df.columns:
|
| 176 |
+
kpi_masks[kpi_col] = df[kpi_col].notna()
|
| 177 |
+
|
| 178 |
+
df.fillna(0, inplace=True)
|
| 179 |
+
|
| 180 |
+
for kpi_col, mask in kpi_masks.items():
|
| 181 |
+
df.loc[~mask, kpi_col] = np.nan
|
| 182 |
+
|
| 183 |
+
df["total_voice_trafic"] = df["2g_voice_trafic"] + df["3g_voice_trafic"]
|
| 184 |
+
df["total_data_trafic"] = (
|
| 185 |
+
df["2g_data_trafic"] + df["3g_data_trafic"] + df["lte_data_trafic"]
|
| 186 |
+
)
|
| 187 |
+
df = pd.merge(df, physical_db, on=["code"], how="left")
|
| 188 |
+
|
| 189 |
+
pre_start, pre_end = pd.to_datetime(pre_range[0]), pd.to_datetime(pre_range[1])
|
| 190 |
+
post_start, post_end = pd.to_datetime(post_range[0]), pd.to_datetime(post_range[1])
|
| 191 |
+
last_period_start, last_period_end = pd.to_datetime(
|
| 192 |
+
last_period_range[0]
|
| 193 |
+
), pd.to_datetime(last_period_range[1])
|
| 194 |
+
|
| 195 |
+
last_period = df[
|
| 196 |
+
(df["date"] >= last_period_start) & (df["date"] <= last_period_end)
|
| 197 |
+
]
|
| 198 |
+
|
| 199 |
+
def assign_period(x):
|
| 200 |
+
if pre_start <= x <= pre_end:
|
| 201 |
+
return "pre"
|
| 202 |
+
if post_start <= x <= post_end:
|
| 203 |
+
return "post"
|
| 204 |
+
return "other"
|
| 205 |
+
|
| 206 |
+
df["period"] = df["date"].apply(assign_period)
|
| 207 |
+
|
| 208 |
+
comparison = df[df["period"].isin(["pre", "post"])]
|
| 209 |
+
|
| 210 |
+
sum_pivot = (
|
| 211 |
+
comparison.groupby(["code", "period"])[
|
| 212 |
+
["total_voice_trafic", "total_data_trafic"]
|
| 213 |
+
]
|
| 214 |
+
.sum()
|
| 215 |
+
.unstack()
|
| 216 |
+
)
|
| 217 |
+
sum_pivot.columns = [f"{metric}_{period}" for metric, period in sum_pivot.columns]
|
| 218 |
+
sum_pivot = sum_pivot.reset_index()
|
| 219 |
+
|
| 220 |
+
sum_pivot["total_voice_trafic_diff"] = (
|
| 221 |
+
sum_pivot["total_voice_trafic_post"] - sum_pivot["total_voice_trafic_pre"]
|
| 222 |
+
)
|
| 223 |
+
sum_pivot["total_data_trafic_diff"] = (
|
| 224 |
+
sum_pivot["total_data_trafic_post"] - sum_pivot["total_data_trafic_pre"]
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
for metric in ["total_voice_trafic", "total_data_trafic"]:
|
| 228 |
+
sum_pivot[f"{metric}_diff_pct"] = (
|
| 229 |
+
(sum_pivot.get(f"{metric}_post", 0) - sum_pivot.get(f"{metric}_pre", 0))
|
| 230 |
+
/ sum_pivot.get(f"{metric}_pre", 1)
|
| 231 |
+
) * 100
|
| 232 |
+
|
| 233 |
+
sum_order = [
|
| 234 |
+
"code",
|
| 235 |
+
"total_voice_trafic_pre",
|
| 236 |
+
"total_voice_trafic_post",
|
| 237 |
+
"total_voice_trafic_diff",
|
| 238 |
+
"total_voice_trafic_diff_pct",
|
| 239 |
+
"total_data_trafic_pre",
|
| 240 |
+
"total_data_trafic_post",
|
| 241 |
+
"total_data_trafic_diff",
|
| 242 |
+
"total_data_trafic_diff_pct",
|
| 243 |
+
]
|
| 244 |
+
sum_existing_cols = [col for col in sum_order if col in sum_pivot.columns]
|
| 245 |
+
sum_remaining_cols = [
|
| 246 |
+
col for col in sum_pivot.columns if col not in sum_existing_cols
|
| 247 |
+
]
|
| 248 |
+
sum_pivot = sum_pivot[sum_existing_cols + sum_remaining_cols]
|
| 249 |
+
|
| 250 |
+
avg_pivot = (
|
| 251 |
+
comparison.groupby(["code", "period"])[
|
| 252 |
+
["total_voice_trafic", "total_data_trafic"]
|
| 253 |
+
]
|
| 254 |
+
.mean()
|
| 255 |
+
.unstack()
|
| 256 |
+
)
|
| 257 |
+
avg_pivot.columns = [f"{metric}_{period}" for metric, period in avg_pivot.columns]
|
| 258 |
+
avg_pivot = avg_pivot.reset_index()
|
| 259 |
+
|
| 260 |
+
avg_pivot["total_voice_trafic_diff"] = (
|
| 261 |
+
avg_pivot["total_voice_trafic_post"] - avg_pivot["total_voice_trafic_pre"]
|
| 262 |
+
)
|
| 263 |
+
avg_pivot["total_data_trafic_diff"] = (
|
| 264 |
+
avg_pivot["total_data_trafic_post"] - avg_pivot["total_data_trafic_pre"]
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
for metric in ["total_voice_trafic", "total_data_trafic"]:
|
| 268 |
+
avg_pivot[f"{metric}_diff_pct"] = (
|
| 269 |
+
(avg_pivot.get(f"{metric}_post", 0) - avg_pivot.get(f"{metric}_pre", 0))
|
| 270 |
+
/ avg_pivot.get(f"{metric}_pre", 1)
|
| 271 |
+
) * 100
|
| 272 |
+
|
| 273 |
+
avg_pivot = avg_pivot.rename(
|
| 274 |
+
columns={
|
| 275 |
+
"total_voice_trafic_pre": "avg_voice_trafic_pre",
|
| 276 |
+
"total_voice_trafic_post": "avg_voice_trafic_post",
|
| 277 |
+
"total_voice_trafic_diff": "avg_voice_trafic_diff",
|
| 278 |
+
"total_voice_trafic_diff_pct": "avg_voice_trafic_diff_pct",
|
| 279 |
+
"total_data_trafic_pre": "avg_data_trafic_pre",
|
| 280 |
+
"total_data_trafic_post": "avg_data_trafic_post",
|
| 281 |
+
"total_data_trafic_diff": "avg_data_trafic_diff",
|
| 282 |
+
"total_data_trafic_diff_pct": "avg_data_trafic_diff_pct",
|
| 283 |
+
}
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
avg_order = [
|
| 287 |
+
"code",
|
| 288 |
+
"avg_voice_trafic_pre",
|
| 289 |
+
"avg_voice_trafic_post",
|
| 290 |
+
"avg_voice_trafic_diff",
|
| 291 |
+
"avg_voice_trafic_diff_pct",
|
| 292 |
+
"avg_data_trafic_pre",
|
| 293 |
+
"avg_data_trafic_post",
|
| 294 |
+
"avg_data_trafic_diff",
|
| 295 |
+
"avg_data_trafic_diff_pct",
|
| 296 |
+
]
|
| 297 |
+
avg_existing_cols = [col for col in avg_order if col in avg_pivot.columns]
|
| 298 |
+
avg_remaining_cols = [
|
| 299 |
+
col for col in avg_pivot.columns if col not in avg_existing_cols
|
| 300 |
+
]
|
| 301 |
+
avg_pivot = avg_pivot[avg_existing_cols + avg_remaining_cols]
|
| 302 |
+
|
| 303 |
+
return df, last_period, sum_pivot.round(2), avg_pivot.round(2)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def analyze_2g_availability(df: pd.DataFrame, sla_2g: float):
|
| 307 |
+
avail_col = "2g_tch_avail"
|
| 308 |
+
|
| 309 |
+
if avail_col not in df.columns or "period" not in df.columns:
|
| 310 |
+
return None, None
|
| 311 |
+
|
| 312 |
+
df_2g = df[df[avail_col].notna()].copy()
|
| 313 |
+
df_2g = df_2g[df_2g["period"].isin(["pre", "post"])]
|
| 314 |
+
|
| 315 |
+
if df_2g.empty:
|
| 316 |
+
return None, None
|
| 317 |
+
|
| 318 |
+
site_pivot = df_2g.groupby(["code", "period"])[avail_col].mean().unstack()
|
| 319 |
+
|
| 320 |
+
site_pivot = site_pivot.rename(
|
| 321 |
+
columns={"pre": "tch_avail_pre", "post": "tch_avail_post"}
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
if "tch_avail_pre" not in site_pivot.columns:
|
| 325 |
+
site_pivot["tch_avail_pre"] = pd.NA
|
| 326 |
+
if "tch_avail_post" not in site_pivot.columns:
|
| 327 |
+
site_pivot["tch_avail_post"] = pd.NA
|
| 328 |
+
|
| 329 |
+
site_pivot["tch_avail_diff"] = (
|
| 330 |
+
site_pivot["tch_avail_post"] - site_pivot["tch_avail_pre"]
|
| 331 |
+
)
|
| 332 |
+
site_pivot["pre_ok_vs_sla"] = site_pivot["tch_avail_pre"] >= sla_2g
|
| 333 |
+
site_pivot["post_ok_vs_sla"] = site_pivot["tch_avail_post"] >= sla_2g
|
| 334 |
+
|
| 335 |
+
site_pivot = site_pivot.reset_index()
|
| 336 |
+
|
| 337 |
+
summary_rows = []
|
| 338 |
+
for period_label, col_name in [
|
| 339 |
+
("pre", "tch_avail_pre"),
|
| 340 |
+
("post", "tch_avail_post"),
|
| 341 |
+
]:
|
| 342 |
+
series = site_pivot[col_name].dropna()
|
| 343 |
+
total_cells = series.shape[0]
|
| 344 |
+
if total_cells == 0:
|
| 345 |
+
summary_rows.append(
|
| 346 |
+
{
|
| 347 |
+
"period": period_label,
|
| 348 |
+
"cells": 0,
|
| 349 |
+
"avg_availability": pd.NA,
|
| 350 |
+
"median_availability": pd.NA,
|
| 351 |
+
"p05_availability": pd.NA,
|
| 352 |
+
"p95_availability": pd.NA,
|
| 353 |
+
"min_availability": pd.NA,
|
| 354 |
+
"max_availability": pd.NA,
|
| 355 |
+
"cells_ge_sla": 0,
|
| 356 |
+
"cells_lt_sla": 0,
|
| 357 |
+
"pct_cells_ge_sla": pd.NA,
|
| 358 |
+
}
|
| 359 |
+
)
|
| 360 |
+
continue
|
| 361 |
+
cells_ge_sla = (series >= sla_2g).sum()
|
| 362 |
+
cells_lt_sla = (series < sla_2g).sum()
|
| 363 |
+
summary_rows.append(
|
| 364 |
+
{
|
| 365 |
+
"period": period_label,
|
| 366 |
+
"cells": int(total_cells),
|
| 367 |
+
"avg_availability": series.mean(),
|
| 368 |
+
"median_availability": series.median(),
|
| 369 |
+
"p05_availability": series.quantile(0.05),
|
| 370 |
+
"p95_availability": series.quantile(0.95),
|
| 371 |
+
"min_availability": series.min(),
|
| 372 |
+
"max_availability": series.max(),
|
| 373 |
+
"cells_ge_sla": int(cells_ge_sla),
|
| 374 |
+
"cells_lt_sla": int(cells_lt_sla),
|
| 375 |
+
"pct_cells_ge_sla": cells_ge_sla / total_cells * 100,
|
| 376 |
+
}
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
summary_df = pd.DataFrame(summary_rows)
|
| 380 |
+
|
| 381 |
+
return summary_df, site_pivot
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def analyze_3g_availability(df: pd.DataFrame, sla_3g: float):
|
| 385 |
+
avail_col = "3g_cell_avail"
|
| 386 |
+
|
| 387 |
+
if avail_col not in df.columns or "period" not in df.columns:
|
| 388 |
+
return None, None
|
| 389 |
+
|
| 390 |
+
df_3g = df[df[avail_col].notna()].copy()
|
| 391 |
+
df_3g = df_3g[df_3g["period"].isin(["pre", "post"])]
|
| 392 |
+
|
| 393 |
+
if df_3g.empty:
|
| 394 |
+
return None, None
|
| 395 |
+
|
| 396 |
+
site_pivot = df_3g.groupby(["code", "period"])[avail_col].mean().unstack()
|
| 397 |
+
|
| 398 |
+
site_pivot = site_pivot.rename(
|
| 399 |
+
columns={"pre": "cell_avail_pre", "post": "cell_avail_post"}
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
if "cell_avail_pre" not in site_pivot.columns:
|
| 403 |
+
site_pivot["cell_avail_pre"] = pd.NA
|
| 404 |
+
if "cell_avail_post" not in site_pivot.columns:
|
| 405 |
+
site_pivot["cell_avail_post"] = pd.NA
|
| 406 |
+
|
| 407 |
+
site_pivot["cell_avail_diff"] = (
|
| 408 |
+
site_pivot["cell_avail_post"] - site_pivot["cell_avail_pre"]
|
| 409 |
+
)
|
| 410 |
+
site_pivot["pre_ok_vs_sla"] = site_pivot["cell_avail_pre"] >= sla_3g
|
| 411 |
+
site_pivot["post_ok_vs_sla"] = site_pivot["cell_avail_post"] >= sla_3g
|
| 412 |
+
|
| 413 |
+
site_pivot = site_pivot.reset_index()
|
| 414 |
+
|
| 415 |
+
summary_rows = []
|
| 416 |
+
for period_label, col_name in [
|
| 417 |
+
("pre", "cell_avail_pre"),
|
| 418 |
+
("post", "cell_avail_post"),
|
| 419 |
+
]:
|
| 420 |
+
series = site_pivot[col_name].dropna()
|
| 421 |
+
total_cells = series.shape[0]
|
| 422 |
+
if total_cells == 0:
|
| 423 |
+
summary_rows.append(
|
| 424 |
+
{
|
| 425 |
+
"period": period_label,
|
| 426 |
+
"cells": 0,
|
| 427 |
+
"avg_availability": pd.NA,
|
| 428 |
+
"median_availability": pd.NA,
|
| 429 |
+
"p05_availability": pd.NA,
|
| 430 |
+
"p95_availability": pd.NA,
|
| 431 |
+
"min_availability": pd.NA,
|
| 432 |
+
"max_availability": pd.NA,
|
| 433 |
+
"cells_ge_sla": 0,
|
| 434 |
+
"cells_lt_sla": 0,
|
| 435 |
+
"pct_cells_ge_sla": pd.NA,
|
| 436 |
+
}
|
| 437 |
+
)
|
| 438 |
+
continue
|
| 439 |
+
cells_ge_sla = (series >= sla_3g).sum()
|
| 440 |
+
cells_lt_sla = (series < sla_3g).sum()
|
| 441 |
+
summary_rows.append(
|
| 442 |
+
{
|
| 443 |
+
"period": period_label,
|
| 444 |
+
"cells": int(total_cells),
|
| 445 |
+
"avg_availability": series.mean(),
|
| 446 |
+
"median_availability": series.median(),
|
| 447 |
+
"p05_availability": series.quantile(0.05),
|
| 448 |
+
"p95_availability": series.quantile(0.95),
|
| 449 |
+
"min_availability": series.min(),
|
| 450 |
+
"max_availability": series.max(),
|
| 451 |
+
"cells_ge_sla": int(cells_ge_sla),
|
| 452 |
+
"cells_lt_sla": int(cells_lt_sla),
|
| 453 |
+
"pct_cells_ge_sla": cells_ge_sla / total_cells * 100,
|
| 454 |
+
}
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
summary_df = pd.DataFrame(summary_rows)
|
| 458 |
+
|
| 459 |
+
return summary_df, site_pivot
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
def analyze_lte_availability(df: pd.DataFrame, sla_lte: float):
|
| 463 |
+
avail_col = "lte_cell_avail"
|
| 464 |
+
|
| 465 |
+
if avail_col not in df.columns or "period" not in df.columns:
|
| 466 |
+
return None, None
|
| 467 |
+
|
| 468 |
+
df_lte = df[df[avail_col].notna()].copy()
|
| 469 |
+
df_lte = df_lte[df_lte["period"].isin(["pre", "post"])]
|
| 470 |
+
|
| 471 |
+
if df_lte.empty:
|
| 472 |
+
return None, None
|
| 473 |
+
|
| 474 |
+
site_pivot = df_lte.groupby(["code", "period"])[avail_col].mean().unstack()
|
| 475 |
+
|
| 476 |
+
site_pivot = site_pivot.rename(
|
| 477 |
+
columns={"pre": "lte_avail_pre", "post": "lte_avail_post"}
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
if "lte_avail_pre" not in site_pivot.columns:
|
| 481 |
+
site_pivot["lte_avail_pre"] = pd.NA
|
| 482 |
+
if "lte_avail_post" not in site_pivot.columns:
|
| 483 |
+
site_pivot["lte_avail_post"] = pd.NA
|
| 484 |
+
|
| 485 |
+
site_pivot["lte_avail_diff"] = (
|
| 486 |
+
site_pivot["lte_avail_post"] - site_pivot["lte_avail_pre"]
|
| 487 |
+
)
|
| 488 |
+
site_pivot["pre_ok_vs_sla"] = site_pivot["lte_avail_pre"] >= sla_lte
|
| 489 |
+
site_pivot["post_ok_vs_sla"] = site_pivot["lte_avail_post"] >= sla_lte
|
| 490 |
+
|
| 491 |
+
site_pivot = site_pivot.reset_index()
|
| 492 |
+
|
| 493 |
+
summary_rows = []
|
| 494 |
+
for period_label, col_name in [
|
| 495 |
+
("pre", "lte_avail_pre"),
|
| 496 |
+
("post", "lte_avail_post"),
|
| 497 |
+
]:
|
| 498 |
+
series = site_pivot[col_name].dropna()
|
| 499 |
+
total_cells = series.shape[0]
|
| 500 |
+
if total_cells == 0:
|
| 501 |
+
summary_rows.append(
|
| 502 |
+
{
|
| 503 |
+
"period": period_label,
|
| 504 |
+
"cells": 0,
|
| 505 |
+
"avg_availability": pd.NA,
|
| 506 |
+
"median_availability": pd.NA,
|
| 507 |
+
"p05_availability": pd.NA,
|
| 508 |
+
"p95_availability": pd.NA,
|
| 509 |
+
"min_availability": pd.NA,
|
| 510 |
+
"max_availability": pd.NA,
|
| 511 |
+
"cells_ge_sla": 0,
|
| 512 |
+
"cells_lt_sla": 0,
|
| 513 |
+
"pct_cells_ge_sla": pd.NA,
|
| 514 |
+
}
|
| 515 |
+
)
|
| 516 |
+
continue
|
| 517 |
+
cells_ge_sla = (series >= sla_lte).sum()
|
| 518 |
+
cells_lt_sla = (series < sla_lte).sum()
|
| 519 |
+
summary_rows.append(
|
| 520 |
+
{
|
| 521 |
+
"period": period_label,
|
| 522 |
+
"cells": int(total_cells),
|
| 523 |
+
"avg_availability": series.mean(),
|
| 524 |
+
"median_availability": series.median(),
|
| 525 |
+
"p05_availability": series.quantile(0.05),
|
| 526 |
+
"p95_availability": series.quantile(0.95),
|
| 527 |
+
"min_availability": series.min(),
|
| 528 |
+
"max_availability": series.max(),
|
| 529 |
+
"cells_ge_sla": int(cells_ge_sla),
|
| 530 |
+
"cells_lt_sla": int(cells_lt_sla),
|
| 531 |
+
"pct_cells_ge_sla": cells_ge_sla / total_cells * 100,
|
| 532 |
+
}
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
summary_df = pd.DataFrame(summary_rows)
|
| 536 |
+
|
| 537 |
+
return summary_df, site_pivot
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
def analyze_multirat_availability(
|
| 541 |
+
df: pd.DataFrame, sla_2g: float, sla_3g: float, sla_lte: float
|
| 542 |
+
):
|
| 543 |
+
if "period" not in df.columns:
|
| 544 |
+
return None
|
| 545 |
+
|
| 546 |
+
rat_cols = []
|
| 547 |
+
if "2g_tch_avail" in df.columns:
|
| 548 |
+
rat_cols.append("2g_tch_avail")
|
| 549 |
+
if "3g_cell_avail" in df.columns:
|
| 550 |
+
rat_cols.append("3g_cell_avail")
|
| 551 |
+
if "lte_cell_avail" in df.columns:
|
| 552 |
+
rat_cols.append("lte_cell_avail")
|
| 553 |
+
|
| 554 |
+
if not rat_cols:
|
| 555 |
+
return None
|
| 556 |
+
|
| 557 |
+
agg_dict = {col: "mean" for col in rat_cols}
|
| 558 |
+
|
| 559 |
+
df_pre = df[df["period"] == "pre"]
|
| 560 |
+
df_post = df[df["period"] == "post"]
|
| 561 |
+
|
| 562 |
+
pre = df_pre.groupby("code", as_index=False).agg(agg_dict)
|
| 563 |
+
post = df_post.groupby("code", as_index=False).agg(agg_dict)
|
| 564 |
+
|
| 565 |
+
rename_map_pre = {
|
| 566 |
+
"2g_tch_avail": "2g_avail_pre",
|
| 567 |
+
"3g_cell_avail": "3g_avail_pre",
|
| 568 |
+
"lte_cell_avail": "lte_avail_pre",
|
| 569 |
+
}
|
| 570 |
+
rename_map_post = {
|
| 571 |
+
"2g_tch_avail": "2g_avail_post",
|
| 572 |
+
"3g_cell_avail": "3g_avail_post",
|
| 573 |
+
"lte_cell_avail": "lte_avail_post",
|
| 574 |
+
}
|
| 575 |
+
|
| 576 |
+
pre = pre.rename(columns=rename_map_pre)
|
| 577 |
+
post = post.rename(columns=rename_map_post)
|
| 578 |
+
|
| 579 |
+
multi = pd.merge(pre, post, on="code", how="outer")
|
| 580 |
+
|
| 581 |
+
if not df_post.empty and {
|
| 582 |
+
"total_voice_trafic",
|
| 583 |
+
"total_data_trafic",
|
| 584 |
+
}.issubset(df_post.columns):
|
| 585 |
+
post_traffic = (
|
| 586 |
+
df_post.groupby("code", as_index=False)[
|
| 587 |
+
["total_voice_trafic", "total_data_trafic"]
|
| 588 |
+
]
|
| 589 |
+
.sum()
|
| 590 |
+
.rename(
|
| 591 |
+
columns={
|
| 592 |
+
"total_voice_trafic": "post_total_voice_trafic",
|
| 593 |
+
"total_data_trafic": "post_total_data_trafic",
|
| 594 |
+
}
|
| 595 |
+
)
|
| 596 |
+
)
|
| 597 |
+
multi = pd.merge(multi, post_traffic, on="code", how="left")
|
| 598 |
+
|
| 599 |
+
if "City" in df.columns:
|
| 600 |
+
city_df = df[["code", "City"]].drop_duplicates("code")
|
| 601 |
+
multi = pd.merge(multi, city_df, on="code", how="left")
|
| 602 |
+
|
| 603 |
+
def _ok_flag(series: pd.Series, sla: float) -> pd.Series:
|
| 604 |
+
if series.name not in multi.columns:
|
| 605 |
+
return pd.Series([pd.NA] * len(multi), index=multi.index)
|
| 606 |
+
ok = multi[series.name] >= sla
|
| 607 |
+
ok = ok.where(multi[series.name].notna(), pd.NA)
|
| 608 |
+
return ok
|
| 609 |
+
|
| 610 |
+
if "2g_avail_post" in multi.columns:
|
| 611 |
+
multi["ok_2g_post"] = _ok_flag(multi["2g_avail_post"], sla_2g)
|
| 612 |
+
if "3g_avail_post" in multi.columns:
|
| 613 |
+
multi["ok_3g_post"] = _ok_flag(multi["3g_avail_post"], sla_3g)
|
| 614 |
+
if "lte_avail_post" in multi.columns:
|
| 615 |
+
multi["ok_lte_post"] = _ok_flag(multi["lte_avail_post"], sla_lte)
|
| 616 |
+
|
| 617 |
+
def classify_row(row):
|
| 618 |
+
rats_status = []
|
| 619 |
+
for rat, col in [
|
| 620 |
+
("2G", "ok_2g_post"),
|
| 621 |
+
("3G", "ok_3g_post"),
|
| 622 |
+
("LTE", "ok_lte_post"),
|
| 623 |
+
]:
|
| 624 |
+
if col in row and not pd.isna(row[col]):
|
| 625 |
+
rats_status.append((rat, bool(row[col])))
|
| 626 |
+
|
| 627 |
+
if not rats_status:
|
| 628 |
+
return "No RAT data"
|
| 629 |
+
|
| 630 |
+
bad_rats = [rat for rat, ok in rats_status if not ok]
|
| 631 |
+
if not bad_rats:
|
| 632 |
+
return "OK all RAT"
|
| 633 |
+
if len(bad_rats) == 1:
|
| 634 |
+
return f"Degraded {bad_rats[0]} only"
|
| 635 |
+
return "Degraded multi-RAT (" + ",".join(bad_rats) + ")"
|
| 636 |
+
|
| 637 |
+
multi["post_multirat_status"] = multi.apply(classify_row, axis=1)
|
| 638 |
+
|
| 639 |
+
ordered_cols = ["code"]
|
| 640 |
+
if "City" in multi.columns:
|
| 641 |
+
ordered_cols.append("City")
|
| 642 |
+
for col in [
|
| 643 |
+
"2g_avail_pre",
|
| 644 |
+
"2g_avail_post",
|
| 645 |
+
"3g_avail_pre",
|
| 646 |
+
"3g_avail_post",
|
| 647 |
+
"lte_avail_pre",
|
| 648 |
+
"lte_avail_post",
|
| 649 |
+
"post_total_voice_trafic",
|
| 650 |
+
"post_total_data_trafic",
|
| 651 |
+
"ok_2g_post",
|
| 652 |
+
"ok_3g_post",
|
| 653 |
+
"ok_lte_post",
|
| 654 |
+
"post_multirat_status",
|
| 655 |
+
]:
|
| 656 |
+
if col in multi.columns:
|
| 657 |
+
ordered_cols.append(col)
|
| 658 |
+
|
| 659 |
+
remaining_cols = [c for c in multi.columns if c not in ordered_cols]
|
| 660 |
+
multi = multi[ordered_cols + remaining_cols]
|
| 661 |
+
|
| 662 |
+
return multi
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
def analyze_persistent_availability(
|
| 666 |
+
df: pd.DataFrame,
|
| 667 |
+
multi_rat_df: pd.DataFrame,
|
| 668 |
+
sla_2g: float,
|
| 669 |
+
sla_3g: float,
|
| 670 |
+
sla_lte: float,
|
| 671 |
+
min_consecutive_days: int = 3,
|
| 672 |
+
) -> pd.DataFrame:
|
| 673 |
+
if df is None or df.empty:
|
| 674 |
+
return pd.DataFrame()
|
| 675 |
+
if "date" not in df.columns or "code" not in df.columns:
|
| 676 |
+
return pd.DataFrame()
|
| 677 |
+
|
| 678 |
+
work_df = df.copy()
|
| 679 |
+
work_df["date_only"] = work_df["date"].dt.date
|
| 680 |
+
|
| 681 |
+
site_stats = {}
|
| 682 |
+
|
| 683 |
+
def _update_stats(rat_key_prefix: str, grouped: pd.DataFrame, sla: float) -> None:
|
| 684 |
+
if grouped.empty:
|
| 685 |
+
return
|
| 686 |
+
for code, group in grouped.groupby("code"):
|
| 687 |
+
group = group.sort_values("date_only")
|
| 688 |
+
dates = pd.to_datetime(group["date_only"]).tolist()
|
| 689 |
+
below_flags = (group["value"] < sla).tolist()
|
| 690 |
+
max_streak = 0
|
| 691 |
+
current_streak = 0
|
| 692 |
+
total_below = 0
|
| 693 |
+
last_date = None
|
| 694 |
+
for flag, current_date in zip(below_flags, dates):
|
| 695 |
+
if flag:
|
| 696 |
+
total_below += 1
|
| 697 |
+
if (
|
| 698 |
+
last_date is not None
|
| 699 |
+
and current_date == last_date + timedelta(days=1)
|
| 700 |
+
and current_streak > 0
|
| 701 |
+
):
|
| 702 |
+
current_streak += 1
|
| 703 |
+
else:
|
| 704 |
+
current_streak = 1
|
| 705 |
+
if current_streak > max_streak:
|
| 706 |
+
max_streak = current_streak
|
| 707 |
+
else:
|
| 708 |
+
current_streak = 0
|
| 709 |
+
last_date = current_date
|
| 710 |
+
stats = site_stats.setdefault(
|
| 711 |
+
code,
|
| 712 |
+
{
|
| 713 |
+
"code": code,
|
| 714 |
+
"max_streak_2g": 0,
|
| 715 |
+
"max_streak_3g": 0,
|
| 716 |
+
"max_streak_lte": 0,
|
| 717 |
+
"below_days_2g": 0,
|
| 718 |
+
"below_days_3g": 0,
|
| 719 |
+
"below_days_lte": 0,
|
| 720 |
+
},
|
| 721 |
+
)
|
| 722 |
+
stats[f"max_streak_{rat_key_prefix}"] = max_streak
|
| 723 |
+
stats[f"below_days_{rat_key_prefix}"] = total_below
|
| 724 |
+
|
| 725 |
+
for rat_col, rat_key, sla in [
|
| 726 |
+
("2g_tch_avail", "2g", sla_2g),
|
| 727 |
+
("3g_cell_avail", "3g", sla_3g),
|
| 728 |
+
("lte_cell_avail", "lte", sla_lte),
|
| 729 |
+
]:
|
| 730 |
+
if rat_col in work_df.columns:
|
| 731 |
+
g = (
|
| 732 |
+
work_df.dropna(subset=[rat_col])
|
| 733 |
+
.groupby(["code", "date_only"])[rat_col]
|
| 734 |
+
.mean()
|
| 735 |
+
.reset_index()
|
| 736 |
+
)
|
| 737 |
+
g = g.rename(columns={rat_col: "value"})
|
| 738 |
+
_update_stats(rat_key, g, sla)
|
| 739 |
+
|
| 740 |
+
if not site_stats:
|
| 741 |
+
return pd.DataFrame()
|
| 742 |
+
|
| 743 |
+
rows = []
|
| 744 |
+
for code, s in site_stats.items():
|
| 745 |
+
max_2g = s.get("max_streak_2g", 0)
|
| 746 |
+
max_3g = s.get("max_streak_3g", 0)
|
| 747 |
+
max_lte = s.get("max_streak_lte", 0)
|
| 748 |
+
below_2g = s.get("below_days_2g", 0)
|
| 749 |
+
below_3g = s.get("below_days_3g", 0)
|
| 750 |
+
below_lte = s.get("below_days_lte", 0)
|
| 751 |
+
persistent_2g = max_2g >= min_consecutive_days if max_2g else False
|
| 752 |
+
persistent_3g = max_3g >= min_consecutive_days if max_3g else False
|
| 753 |
+
persistent_lte = max_lte >= min_consecutive_days if max_lte else False
|
| 754 |
+
total_below_any = below_2g + below_3g + below_lte
|
| 755 |
+
persistent_any = persistent_2g or persistent_3g or persistent_lte
|
| 756 |
+
rats_persistent_count = sum(
|
| 757 |
+
[persistent_2g is True, persistent_3g is True, persistent_lte is True]
|
| 758 |
+
)
|
| 759 |
+
rows.append(
|
| 760 |
+
{
|
| 761 |
+
"code": code,
|
| 762 |
+
"persistent_issue_2g": persistent_2g,
|
| 763 |
+
"persistent_issue_3g": persistent_3g,
|
| 764 |
+
"persistent_issue_lte": persistent_lte,
|
| 765 |
+
"max_consecutive_days_2g": max_2g,
|
| 766 |
+
"max_consecutive_days_3g": max_3g,
|
| 767 |
+
"max_consecutive_days_lte": max_lte,
|
| 768 |
+
"total_below_days_2g": below_2g,
|
| 769 |
+
"total_below_days_3g": below_3g,
|
| 770 |
+
"total_below_days_lte": below_lte,
|
| 771 |
+
"total_below_days_any": total_below_any,
|
| 772 |
+
"persistent_issue_any": persistent_any,
|
| 773 |
+
"persistent_rats_count": rats_persistent_count,
|
| 774 |
+
}
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
result = pd.DataFrame(rows)
|
| 778 |
+
result = result[result["persistent_issue_any"] == True]
|
| 779 |
+
if result.empty:
|
| 780 |
+
return result
|
| 781 |
+
|
| 782 |
+
if multi_rat_df is not None and not multi_rat_df.empty:
|
| 783 |
+
cols_to_merge = [
|
| 784 |
+
c
|
| 785 |
+
for c in [
|
| 786 |
+
"code",
|
| 787 |
+
"City",
|
| 788 |
+
"post_total_voice_trafic",
|
| 789 |
+
"post_total_data_trafic",
|
| 790 |
+
"post_multirat_status",
|
| 791 |
+
]
|
| 792 |
+
if c in multi_rat_df.columns
|
| 793 |
+
]
|
| 794 |
+
if cols_to_merge:
|
| 795 |
+
result = pd.merge(
|
| 796 |
+
result,
|
| 797 |
+
multi_rat_df[cols_to_merge].drop_duplicates("code"),
|
| 798 |
+
on="code",
|
| 799 |
+
how="left",
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
if "post_total_data_trafic" not in result.columns:
|
| 803 |
+
result["post_total_data_trafic"] = 0.0
|
| 804 |
+
|
| 805 |
+
result["criticity_score"] = (
|
| 806 |
+
result["post_total_data_trafic"].fillna(0) * 1.0
|
| 807 |
+
+ result["total_below_days_any"].fillna(0) * 100.0
|
| 808 |
+
+ result["persistent_rats_count"].fillna(0) * 1000.0
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
result = result.sort_values(
|
| 812 |
+
by=["criticity_score", "total_below_days_any"], ascending=[False, False]
|
| 813 |
+
)
|
| 814 |
+
|
| 815 |
+
return result
|
| 816 |
+
|
| 817 |
+
|
| 818 |
+
def monthly_data_analysis(df: pd.DataFrame):
|
| 819 |
+
df["date"] = pd.to_datetime(df["date"])
|
| 820 |
+
df["month_year"] = df["date"].dt.to_period("M").astype(str)
|
| 821 |
+
|
| 822 |
+
voice_trafic = df.pivot_table(
|
| 823 |
+
index="code",
|
| 824 |
+
columns="month_year",
|
| 825 |
+
values="total_voice_trafic",
|
| 826 |
+
aggfunc="sum",
|
| 827 |
+
fill_value=0,
|
| 828 |
+
)
|
| 829 |
+
voice_trafic = voice_trafic.reindex(sorted(voice_trafic.columns), axis=1)
|
| 830 |
+
|
| 831 |
+
data_trafic = df.pivot_table(
|
| 832 |
+
index="code",
|
| 833 |
+
columns="month_year",
|
| 834 |
+
values="total_data_trafic",
|
| 835 |
+
aggfunc="sum",
|
| 836 |
+
fill_value=0,
|
| 837 |
+
)
|
| 838 |
+
data_trafic = data_trafic.reindex(sorted(data_trafic.columns), axis=1)
|
| 839 |
+
|
| 840 |
+
return voice_trafic, data_trafic
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
# --------------------------------------------------------------------------------------
|
| 844 |
+
# Global state for drill-down views & export
|
| 845 |
+
# --------------------------------------------------------------------------------------
|
| 846 |
+
|
| 847 |
+
current_full_df: pd.DataFrame | None = None
|
| 848 |
+
current_last_period_df: pd.DataFrame | None = None
|
| 849 |
+
current_analysis_df: pd.DataFrame | None = None
|
| 850 |
+
current_analysis_last_period_df: pd.DataFrame | None = None
|
| 851 |
+
|
| 852 |
+
current_multi_rat_df: pd.DataFrame | None = None
|
| 853 |
+
current_persistent_df: pd.DataFrame | None = None
|
| 854 |
+
|
| 855 |
+
current_site_2g_avail: pd.DataFrame | None = None
|
| 856 |
+
current_site_3g_avail: pd.DataFrame | None = None
|
| 857 |
+
current_site_lte_avail: pd.DataFrame | None = None
|
| 858 |
+
|
| 859 |
+
current_summary_2g_avail: pd.DataFrame | None = None
|
| 860 |
+
current_summary_3g_avail: pd.DataFrame | None = None
|
| 861 |
+
current_summary_lte_avail: pd.DataFrame | None = None
|
| 862 |
+
|
| 863 |
+
current_monthly_voice_df: pd.DataFrame | None = None
|
| 864 |
+
current_monthly_data_df: pd.DataFrame | None = None
|
| 865 |
+
current_sum_pre_post_df: pd.DataFrame | None = None
|
| 866 |
+
current_avg_pre_post_df: pd.DataFrame | None = None
|
| 867 |
+
current_availability_summary_all_df: pd.DataFrame | None = None
|
| 868 |
+
|
| 869 |
+
current_export_multi_rat_df: pd.DataFrame | None = None
|
| 870 |
+
current_export_persistent_df: pd.DataFrame | None = None
|
| 871 |
+
current_export_bytes: bytes | None = None
|
| 872 |
+
|
| 873 |
+
|
| 874 |
+
# --------------------------------------------------------------------------------------
|
| 875 |
+
# Widgets
|
| 876 |
+
# --------------------------------------------------------------------------------------
|
| 877 |
+
|
| 878 |
+
PLOTLY_CONFIG = {"displaylogo": False, "scrollZoom": True, "displayModeBar": True}
|
| 879 |
+
|
| 880 |
+
file_2g = pn.widgets.FileInput(name="2G Traffic Report", accept=".csv,.zip")
|
| 881 |
+
file_3g = pn.widgets.FileInput(name="3G Traffic Report", accept=".csv,.zip")
|
| 882 |
+
file_lte = pn.widgets.FileInput(name="LTE Traffic Report", accept=".csv,.zip")
|
| 883 |
+
|
| 884 |
+
pre_range = pn.widgets.DateRangePicker(name="Pre-period (from - to)")
|
| 885 |
+
post_range = pn.widgets.DateRangePicker(name="Post-period (from - to)")
|
| 886 |
+
last_range = pn.widgets.DateRangePicker(name="Last period (from - to)")
|
| 887 |
+
|
| 888 |
+
sla_2g = pn.widgets.FloatInput(name="2G TCH availability SLA (%)", value=98.0, step=0.1)
|
| 889 |
+
sla_3g = pn.widgets.FloatInput(
|
| 890 |
+
name="3G Cell availability SLA (%)", value=98.0, step=0.1
|
| 891 |
+
)
|
| 892 |
+
sla_lte = pn.widgets.FloatInput(
|
| 893 |
+
name="LTE Cell availability SLA (%)", value=98.0, step=0.1
|
| 894 |
+
)
|
| 895 |
+
|
| 896 |
+
number_of_top_trafic_sites = pn.widgets.IntInput(
|
| 897 |
+
name="Number of top traffic sites", value=25
|
| 898 |
+
)
|
| 899 |
+
|
| 900 |
+
min_persistent_days_widget = pn.widgets.IntInput(
|
| 901 |
+
name="Minimum consecutive days below SLA to flag persistent issue",
|
| 902 |
+
value=3,
|
| 903 |
+
)
|
| 904 |
+
|
| 905 |
+
top_critical_n_widget = pn.widgets.IntInput(
|
| 906 |
+
name="Number of top critical sites to display", value=25
|
| 907 |
+
)
|
| 908 |
+
|
| 909 |
+
run_button = pn.widgets.Button(name="Run analysis", button_type="primary")
|
| 910 |
+
|
| 911 |
+
status_pane = pn.pane.Alert(
|
| 912 |
+
"Upload the 3 reports, select the 3 periods and click 'Run analysis'",
|
| 913 |
+
alert_type="primary",
|
| 914 |
+
)
|
| 915 |
+
|
| 916 |
+
summary_table = pn.widgets.Tabulator(
|
| 917 |
+
height=250,
|
| 918 |
+
sizing_mode="stretch_width",
|
| 919 |
+
layout="fit_data_table",
|
| 920 |
+
)
|
| 921 |
+
|
| 922 |
+
sum_pre_post_table = pn.widgets.Tabulator(
|
| 923 |
+
height=250,
|
| 924 |
+
sizing_mode="stretch_width",
|
| 925 |
+
layout="fit_data_table",
|
| 926 |
+
)
|
| 927 |
+
summary_2g_table = pn.widgets.Tabulator(
|
| 928 |
+
height=250,
|
| 929 |
+
sizing_mode="stretch_width",
|
| 930 |
+
layout="fit_data_table",
|
| 931 |
+
)
|
| 932 |
+
worst_2g_table = pn.widgets.Tabulator(
|
| 933 |
+
height=250,
|
| 934 |
+
sizing_mode="stretch_width",
|
| 935 |
+
layout="fit_data_table",
|
| 936 |
+
)
|
| 937 |
+
summary_3g_table = pn.widgets.Tabulator(
|
| 938 |
+
height=250,
|
| 939 |
+
sizing_mode="stretch_width",
|
| 940 |
+
layout="fit_data_table",
|
| 941 |
+
)
|
| 942 |
+
worst_3g_table = pn.widgets.Tabulator(
|
| 943 |
+
height=250,
|
| 944 |
+
sizing_mode="stretch_width",
|
| 945 |
+
layout="fit_data_table",
|
| 946 |
+
)
|
| 947 |
+
summary_lte_table = pn.widgets.Tabulator(
|
| 948 |
+
height=250,
|
| 949 |
+
sizing_mode="stretch_width",
|
| 950 |
+
layout="fit_data_table",
|
| 951 |
+
)
|
| 952 |
+
worst_lte_table = pn.widgets.Tabulator(
|
| 953 |
+
height=250,
|
| 954 |
+
sizing_mode="stretch_width",
|
| 955 |
+
layout="fit_data_table",
|
| 956 |
+
)
|
| 957 |
+
multi_rat_table = pn.widgets.Tabulator(
|
| 958 |
+
height=250,
|
| 959 |
+
sizing_mode="stretch_width",
|
| 960 |
+
layout="fit_data_table",
|
| 961 |
+
)
|
| 962 |
+
persistent_table = pn.widgets.Tabulator(
|
| 963 |
+
height=250,
|
| 964 |
+
sizing_mode="stretch_width",
|
| 965 |
+
layout="fit_data_table",
|
| 966 |
+
)
|
| 967 |
+
|
| 968 |
+
site_select = pn.widgets.Select(name="Select a site for detailed view", options={})
|
| 969 |
+
site_traffic_plot = pn.pane.Plotly(
|
| 970 |
+
height=400,
|
| 971 |
+
sizing_mode="stretch_width",
|
| 972 |
+
config=PLOTLY_CONFIG,
|
| 973 |
+
)
|
| 974 |
+
site_avail_plot = pn.pane.Plotly(
|
| 975 |
+
height=400,
|
| 976 |
+
sizing_mode="stretch_width",
|
| 977 |
+
config=PLOTLY_CONFIG,
|
| 978 |
+
)
|
| 979 |
+
site_degraded_table = pn.widgets.Tabulator(
|
| 980 |
+
height=200,
|
| 981 |
+
sizing_mode="stretch_width",
|
| 982 |
+
layout="fit_data_table",
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
city_select = pn.widgets.Select(name="Select a City for aggregated view", options=[])
|
| 986 |
+
city_traffic_plot = pn.pane.Plotly(
|
| 987 |
+
height=400,
|
| 988 |
+
sizing_mode="stretch_width",
|
| 989 |
+
config=PLOTLY_CONFIG,
|
| 990 |
+
)
|
| 991 |
+
city_avail_plot = pn.pane.Plotly(
|
| 992 |
+
height=400,
|
| 993 |
+
sizing_mode="stretch_width",
|
| 994 |
+
config=PLOTLY_CONFIG,
|
| 995 |
+
)
|
| 996 |
+
city_degraded_table = pn.widgets.Tabulator(
|
| 997 |
+
height=200,
|
| 998 |
+
sizing_mode="stretch_width",
|
| 999 |
+
layout="fit_data_table",
|
| 1000 |
+
)
|
| 1001 |
+
|
| 1002 |
+
daily_avail_plot = pn.pane.Plotly(
|
| 1003 |
+
height=400,
|
| 1004 |
+
sizing_mode="stretch_width",
|
| 1005 |
+
config=PLOTLY_CONFIG,
|
| 1006 |
+
)
|
| 1007 |
+
daily_degraded_table = pn.widgets.Tabulator(
|
| 1008 |
+
height=200,
|
| 1009 |
+
sizing_mode="stretch_width",
|
| 1010 |
+
layout="fit_data_table",
|
| 1011 |
+
)
|
| 1012 |
+
|
| 1013 |
+
top_data_sites_table = pn.widgets.Tabulator(
|
| 1014 |
+
height=250,
|
| 1015 |
+
sizing_mode="stretch_width",
|
| 1016 |
+
layout="fit_data_table",
|
| 1017 |
+
)
|
| 1018 |
+
top_voice_sites_table = pn.widgets.Tabulator(
|
| 1019 |
+
height=250,
|
| 1020 |
+
sizing_mode="stretch_width",
|
| 1021 |
+
layout="fit_data_table",
|
| 1022 |
+
)
|
| 1023 |
+
top_data_bar_plot = pn.pane.Plotly(
|
| 1024 |
+
height=400,
|
| 1025 |
+
sizing_mode="stretch_width",
|
| 1026 |
+
config=PLOTLY_CONFIG,
|
| 1027 |
+
)
|
| 1028 |
+
top_voice_bar_plot = pn.pane.Plotly(
|
| 1029 |
+
height=400,
|
| 1030 |
+
sizing_mode="stretch_width",
|
| 1031 |
+
config=PLOTLY_CONFIG,
|
| 1032 |
+
)
|
| 1033 |
+
data_map_plot = pn.pane.Plotly(
|
| 1034 |
+
height=500,
|
| 1035 |
+
sizing_mode="stretch_width",
|
| 1036 |
+
config=PLOTLY_CONFIG,
|
| 1037 |
+
)
|
| 1038 |
+
voice_map_plot = pn.pane.Plotly(
|
| 1039 |
+
height=500,
|
| 1040 |
+
sizing_mode="stretch_width",
|
| 1041 |
+
config=PLOTLY_CONFIG,
|
| 1042 |
+
)
|
| 1043 |
+
|
| 1044 |
+
# Shared pane used inside the fullscreen modal
|
| 1045 |
+
fullscreen_plot = pn.pane.Plotly(
|
| 1046 |
+
sizing_mode="stretch_both",
|
| 1047 |
+
min_height=700,
|
| 1048 |
+
config=PLOTLY_CONFIG,
|
| 1049 |
+
)
|
| 1050 |
+
|
| 1051 |
+
# Fullscreen buttons for each Plotly plot
|
| 1052 |
+
site_traffic_fullscreen_btn = pn.widgets.Button(
|
| 1053 |
+
name="Full screen site traffic", button_type="default"
|
| 1054 |
+
)
|
| 1055 |
+
site_avail_fullscreen_btn = pn.widgets.Button(
|
| 1056 |
+
name="Full screen site availability", button_type="default"
|
| 1057 |
+
)
|
| 1058 |
+
city_traffic_fullscreen_btn = pn.widgets.Button(
|
| 1059 |
+
name="Full screen city traffic", button_type="default"
|
| 1060 |
+
)
|
| 1061 |
+
city_avail_fullscreen_btn = pn.widgets.Button(
|
| 1062 |
+
name="Full screen city availability", button_type="default"
|
| 1063 |
+
)
|
| 1064 |
+
daily_avail_fullscreen_btn = pn.widgets.Button(
|
| 1065 |
+
name="Full screen daily availability", button_type="default"
|
| 1066 |
+
)
|
| 1067 |
+
top_data_fullscreen_btn = pn.widgets.Button(
|
| 1068 |
+
name="Full screen top data bar", button_type="default"
|
| 1069 |
+
)
|
| 1070 |
+
top_voice_fullscreen_btn = pn.widgets.Button(
|
| 1071 |
+
name="Full screen top voice bar", button_type="default"
|
| 1072 |
+
)
|
| 1073 |
+
data_map_fullscreen_btn = pn.widgets.Button(
|
| 1074 |
+
name="Full screen data map", button_type="default"
|
| 1075 |
+
)
|
| 1076 |
+
voice_map_fullscreen_btn = pn.widgets.Button(
|
| 1077 |
+
name="Full screen voice map", button_type="default"
|
| 1078 |
+
)
|
| 1079 |
+
|
| 1080 |
+
multi_rat_download = pn.widgets.FileDownload(
|
| 1081 |
+
label="Download Multi-RAT table (CSV)",
|
| 1082 |
+
filename="multi_rat_availability.csv",
|
| 1083 |
+
button_type="default",
|
| 1084 |
+
)
|
| 1085 |
+
|
| 1086 |
+
persistent_download = pn.widgets.FileDownload(
|
| 1087 |
+
label="Download persistent issues (CSV)",
|
| 1088 |
+
filename="persistent_issues.csv",
|
| 1089 |
+
button_type="default",
|
| 1090 |
+
)
|
| 1091 |
+
|
| 1092 |
+
top_data_download = pn.widgets.FileDownload(
|
| 1093 |
+
label="Download top data sites (CSV)",
|
| 1094 |
+
filename="top_data_sites.csv",
|
| 1095 |
+
button_type="default",
|
| 1096 |
+
)
|
| 1097 |
+
|
| 1098 |
+
top_voice_download = pn.widgets.FileDownload(
|
| 1099 |
+
label="Download top voice sites (CSV)",
|
| 1100 |
+
filename="top_voice_sites.csv",
|
| 1101 |
+
button_type="default",
|
| 1102 |
+
)
|
| 1103 |
+
|
| 1104 |
+
export_button = pn.widgets.FileDownload(
|
| 1105 |
+
label="Download the Analysis Report",
|
| 1106 |
+
filename="Global_Trafic_Analysis_Report.xlsx",
|
| 1107 |
+
button_type="primary",
|
| 1108 |
+
)
|
| 1109 |
+
|
| 1110 |
+
|
| 1111 |
+
# --------------------------------------------------------------------------------------
|
| 1112 |
+
# Callback
|
| 1113 |
+
# --------------------------------------------------------------------------------------
|
| 1114 |
+
|
| 1115 |
+
|
| 1116 |
+
def _validate_date_range(rng: tuple[date, date] | list[date], label: str) -> None:
|
| 1117 |
+
if not rng or len(rng) != 2:
|
| 1118 |
+
raise ValueError(f"Please select 2 dates for {label}.")
|
| 1119 |
+
if rng[0] is None or rng[1] is None:
|
| 1120 |
+
raise ValueError(f"Please select valid dates for {label}.")
|
| 1121 |
+
|
| 1122 |
+
|
| 1123 |
+
def run_analysis(event=None): # event param required by on_click
|
| 1124 |
+
try:
|
| 1125 |
+
status_pane.object = "Running analysis..."
|
| 1126 |
+
status_pane.alert_type = "primary"
|
| 1127 |
+
|
| 1128 |
+
global current_full_df, current_last_period_df
|
| 1129 |
+
global current_analysis_df, current_analysis_last_period_df
|
| 1130 |
+
global current_multi_rat_df, current_persistent_df
|
| 1131 |
+
global current_site_2g_avail, current_site_3g_avail, current_site_lte_avail
|
| 1132 |
+
global current_summary_2g_avail, current_summary_3g_avail, current_summary_lte_avail
|
| 1133 |
+
global current_monthly_voice_df, current_monthly_data_df
|
| 1134 |
+
global current_sum_pre_post_df, current_avg_pre_post_df
|
| 1135 |
+
global current_availability_summary_all_df
|
| 1136 |
+
global current_export_multi_rat_df, current_export_persistent_df
|
| 1137 |
+
global current_export_bytes
|
| 1138 |
+
|
| 1139 |
+
# Basic validations
|
| 1140 |
+
if not (file_2g.value and file_3g.value and file_lte.value):
|
| 1141 |
+
raise ValueError("Please upload all 3 traffic reports (2G, 3G, LTE).")
|
| 1142 |
+
|
| 1143 |
+
_validate_date_range(pre_range.value, "pre-period")
|
| 1144 |
+
_validate_date_range(post_range.value, "post-period")
|
| 1145 |
+
_validate_date_range(last_range.value, "last period")
|
| 1146 |
+
|
| 1147 |
+
# Simple check on overlapping pre/post (same logic as Streamlit version, but lighter)
|
| 1148 |
+
pre_start, pre_end = pre_range.value
|
| 1149 |
+
post_start, post_end = post_range.value
|
| 1150 |
+
if pre_start == post_start and pre_end == post_end:
|
| 1151 |
+
raise ValueError("Pre and post periods are the same.")
|
| 1152 |
+
if pre_start < post_start and pre_end > post_end:
|
| 1153 |
+
raise ValueError("Pre and post periods are overlapping.")
|
| 1154 |
+
|
| 1155 |
+
df_2g = read_fileinput_to_df(file_2g)
|
| 1156 |
+
df_3g = read_fileinput_to_df(file_3g)
|
| 1157 |
+
df_lte = read_fileinput_to_df(file_lte)
|
| 1158 |
+
|
| 1159 |
+
if df_2g is None or df_3g is None or df_lte is None:
|
| 1160 |
+
raise ValueError("Failed to read one or more input files.")
|
| 1161 |
+
|
| 1162 |
+
summary = pd.DataFrame(
|
| 1163 |
+
{
|
| 1164 |
+
"Dataset": ["2G", "3G", "LTE"],
|
| 1165 |
+
"Rows": [len(df_2g), len(df_3g), len(df_lte)],
|
| 1166 |
+
"Columns": [df_2g.shape[1], df_3g.shape[1], df_lte.shape[1]],
|
| 1167 |
+
}
|
| 1168 |
+
)
|
| 1169 |
+
summary_table.value = summary
|
| 1170 |
+
|
| 1171 |
+
df_2g_clean = preprocess_2g(df_2g)
|
| 1172 |
+
df_3g_clean = preprocess_3g(df_3g)
|
| 1173 |
+
df_lte_clean = preprocess_lte(df_lte)
|
| 1174 |
+
|
| 1175 |
+
full_df, last_period, sum_pre_post_analysis, avg_pre_post_analysis = (
|
| 1176 |
+
merge_and_compare(
|
| 1177 |
+
df_2g_clean,
|
| 1178 |
+
df_3g_clean,
|
| 1179 |
+
df_lte_clean,
|
| 1180 |
+
pre_range.value,
|
| 1181 |
+
post_range.value,
|
| 1182 |
+
last_range.value,
|
| 1183 |
+
)
|
| 1184 |
+
)
|
| 1185 |
+
|
| 1186 |
+
monthly_voice_df, monthly_data_df = monthly_data_analysis(full_df)
|
| 1187 |
+
|
| 1188 |
+
analysis_df = full_df
|
| 1189 |
+
|
| 1190 |
+
# Persist global state for later drill-down / export
|
| 1191 |
+
current_full_df = full_df
|
| 1192 |
+
current_last_period_df = last_period
|
| 1193 |
+
current_analysis_df = analysis_df
|
| 1194 |
+
current_analysis_last_period_df = last_period
|
| 1195 |
+
current_monthly_voice_df = monthly_voice_df
|
| 1196 |
+
current_monthly_data_df = monthly_data_df
|
| 1197 |
+
current_sum_pre_post_df = sum_pre_post_analysis
|
| 1198 |
+
current_avg_pre_post_df = avg_pre_post_analysis
|
| 1199 |
+
|
| 1200 |
+
sum_pre_post_table.value = sum_pre_post_analysis
|
| 1201 |
+
|
| 1202 |
+
summary_2g_avail, site_2g_avail = analyze_2g_availability(
|
| 1203 |
+
analysis_df, float(sla_2g.value)
|
| 1204 |
+
)
|
| 1205 |
+
if summary_2g_avail is not None:
|
| 1206 |
+
summary_2g_table.value = summary_2g_avail.round(2)
|
| 1207 |
+
worst_sites_2g = site_2g_avail.sort_values("tch_avail_post").head(25)
|
| 1208 |
+
worst_2g_table.value = worst_sites_2g.round(2)
|
| 1209 |
+
else:
|
| 1210 |
+
summary_2g_table.value = pd.DataFrame()
|
| 1211 |
+
worst_2g_table.value = pd.DataFrame()
|
| 1212 |
+
|
| 1213 |
+
current_summary_2g_avail = summary_2g_avail
|
| 1214 |
+
current_site_2g_avail = site_2g_avail if summary_2g_avail is not None else None
|
| 1215 |
+
|
| 1216 |
+
summary_3g_avail, site_3g_avail = analyze_3g_availability(
|
| 1217 |
+
analysis_df, float(sla_3g.value)
|
| 1218 |
+
)
|
| 1219 |
+
if summary_3g_avail is not None:
|
| 1220 |
+
summary_3g_table.value = summary_3g_avail.round(2)
|
| 1221 |
+
worst_sites_3g = site_3g_avail.sort_values("cell_avail_post").head(25)
|
| 1222 |
+
worst_3g_table.value = worst_sites_3g.round(2)
|
| 1223 |
+
else:
|
| 1224 |
+
summary_3g_table.value = pd.DataFrame()
|
| 1225 |
+
worst_3g_table.value = pd.DataFrame()
|
| 1226 |
+
|
| 1227 |
+
current_summary_3g_avail = summary_3g_avail
|
| 1228 |
+
current_site_3g_avail = site_3g_avail if summary_3g_avail is not None else None
|
| 1229 |
+
|
| 1230 |
+
summary_lte_avail, site_lte_avail = analyze_lte_availability(
|
| 1231 |
+
analysis_df, float(sla_lte.value)
|
| 1232 |
+
)
|
| 1233 |
+
if summary_lte_avail is not None:
|
| 1234 |
+
summary_lte_table.value = summary_lte_avail.round(2)
|
| 1235 |
+
worst_sites_lte = site_lte_avail.sort_values("lte_avail_post").head(25)
|
| 1236 |
+
worst_lte_table.value = worst_sites_lte.round(2)
|
| 1237 |
+
else:
|
| 1238 |
+
summary_lte_table.value = pd.DataFrame()
|
| 1239 |
+
worst_lte_table.value = pd.DataFrame()
|
| 1240 |
+
|
| 1241 |
+
current_summary_lte_avail = summary_lte_avail
|
| 1242 |
+
current_site_lte_avail = (
|
| 1243 |
+
site_lte_avail if summary_lte_avail is not None else None
|
| 1244 |
+
)
|
| 1245 |
+
|
| 1246 |
+
# Build availability summary across RATs for export
|
| 1247 |
+
availability_frames = []
|
| 1248 |
+
if summary_2g_avail is not None:
|
| 1249 |
+
tmp = summary_2g_avail.copy()
|
| 1250 |
+
tmp["RAT"] = "2G"
|
| 1251 |
+
availability_frames.append(tmp)
|
| 1252 |
+
if summary_3g_avail is not None:
|
| 1253 |
+
tmp = summary_3g_avail.copy()
|
| 1254 |
+
tmp["RAT"] = "3G"
|
| 1255 |
+
availability_frames.append(tmp)
|
| 1256 |
+
if summary_lte_avail is not None:
|
| 1257 |
+
tmp = summary_lte_avail.copy()
|
| 1258 |
+
tmp["RAT"] = "LTE"
|
| 1259 |
+
availability_frames.append(tmp)
|
| 1260 |
+
|
| 1261 |
+
current_availability_summary_all_df = (
|
| 1262 |
+
pd.concat(availability_frames, ignore_index=True)
|
| 1263 |
+
if availability_frames
|
| 1264 |
+
else pd.DataFrame()
|
| 1265 |
+
)
|
| 1266 |
+
|
| 1267 |
+
multi_rat_df = analyze_multirat_availability(
|
| 1268 |
+
analysis_df,
|
| 1269 |
+
float(sla_2g.value),
|
| 1270 |
+
float(sla_3g.value),
|
| 1271 |
+
float(sla_lte.value),
|
| 1272 |
+
)
|
| 1273 |
+
if multi_rat_df is not None:
|
| 1274 |
+
multi_rat_table.value = multi_rat_df.round(2)
|
| 1275 |
+
else:
|
| 1276 |
+
multi_rat_table.value = pd.DataFrame()
|
| 1277 |
+
|
| 1278 |
+
current_multi_rat_df = multi_rat_df if multi_rat_df is not None else None
|
| 1279 |
+
|
| 1280 |
+
# Persistent availability (UI uses configurable threshold, export keeps 3 days)
|
| 1281 |
+
persistent_df = pd.DataFrame()
|
| 1282 |
+
if multi_rat_df is not None:
|
| 1283 |
+
persistent_df = analyze_persistent_availability(
|
| 1284 |
+
analysis_df,
|
| 1285 |
+
multi_rat_df,
|
| 1286 |
+
float(sla_2g.value),
|
| 1287 |
+
float(sla_3g.value),
|
| 1288 |
+
float(sla_lte.value),
|
| 1289 |
+
int(min_persistent_days_widget.value),
|
| 1290 |
+
)
|
| 1291 |
+
|
| 1292 |
+
current_persistent_df = (
|
| 1293 |
+
persistent_df
|
| 1294 |
+
if persistent_df is not None and not persistent_df.empty
|
| 1295 |
+
else None
|
| 1296 |
+
)
|
| 1297 |
+
|
| 1298 |
+
# Export-specific multi-RAT & persistent (based on full_df as in Streamlit app)
|
| 1299 |
+
export_multi_rat_base = analyze_multirat_availability(
|
| 1300 |
+
full_df,
|
| 1301 |
+
float(sla_2g.value),
|
| 1302 |
+
float(sla_3g.value),
|
| 1303 |
+
float(sla_lte.value),
|
| 1304 |
+
)
|
| 1305 |
+
current_export_multi_rat_df = (
|
| 1306 |
+
export_multi_rat_base
|
| 1307 |
+
if export_multi_rat_base is not None
|
| 1308 |
+
else pd.DataFrame()
|
| 1309 |
+
)
|
| 1310 |
+
|
| 1311 |
+
export_persistent_tmp = pd.DataFrame()
|
| 1312 |
+
if export_multi_rat_base is not None:
|
| 1313 |
+
export_persistent_tmp = analyze_persistent_availability(
|
| 1314 |
+
full_df,
|
| 1315 |
+
export_multi_rat_base,
|
| 1316 |
+
float(sla_2g.value),
|
| 1317 |
+
float(sla_3g.value),
|
| 1318 |
+
float(sla_lte.value),
|
| 1319 |
+
3,
|
| 1320 |
+
)
|
| 1321 |
+
current_export_persistent_df = (
|
| 1322 |
+
export_persistent_tmp
|
| 1323 |
+
if export_persistent_tmp is not None and not export_persistent_tmp.empty
|
| 1324 |
+
else pd.DataFrame()
|
| 1325 |
+
)
|
| 1326 |
+
|
| 1327 |
+
# Precompute export bytes so the download button is instant
|
| 1328 |
+
current_export_bytes = _build_export_bytes()
|
| 1329 |
+
|
| 1330 |
+
# Update all drill-down & map views
|
| 1331 |
+
_update_site_controls()
|
| 1332 |
+
_update_city_controls()
|
| 1333 |
+
_update_daily_availability_view()
|
| 1334 |
+
_update_top_sites_and_maps()
|
| 1335 |
+
_update_persistent_table_view()
|
| 1336 |
+
|
| 1337 |
+
status_pane.alert_type = "success"
|
| 1338 |
+
status_pane.object = "Analysis completed."
|
| 1339 |
+
|
| 1340 |
+
except Exception as exc: # noqa: BLE001
|
| 1341 |
+
status_pane.alert_type = "danger"
|
| 1342 |
+
status_pane.object = f"Error: {exc}"
|
| 1343 |
+
|
| 1344 |
+
|
| 1345 |
+
run_button.on_click(run_analysis)
|
| 1346 |
+
|
| 1347 |
+
|
| 1348 |
+
def _update_site_controls() -> None:
|
| 1349 |
+
"""Populate site selection widget based on current_analysis_df and refresh view."""
|
| 1350 |
+
if current_analysis_df is None or current_analysis_df.empty:
|
| 1351 |
+
site_select.options = {}
|
| 1352 |
+
site_select.value = None
|
| 1353 |
+
site_traffic_plot.object = None
|
| 1354 |
+
site_avail_plot.object = None
|
| 1355 |
+
site_degraded_table.value = pd.DataFrame()
|
| 1356 |
+
return
|
| 1357 |
+
|
| 1358 |
+
sites_df = (
|
| 1359 |
+
current_analysis_df[["code", "City"]]
|
| 1360 |
+
.drop_duplicates()
|
| 1361 |
+
.sort_values(by=["City", "code"])
|
| 1362 |
+
)
|
| 1363 |
+
|
| 1364 |
+
options: dict[str, int] = {}
|
| 1365 |
+
for _, row in sites_df.iterrows():
|
| 1366 |
+
label = (
|
| 1367 |
+
f"{row['City']}_{row['code']}"
|
| 1368 |
+
if pd.notna(row["City"])
|
| 1369 |
+
else str(row["code"])
|
| 1370 |
+
)
|
| 1371 |
+
options[label] = int(row["code"])
|
| 1372 |
+
|
| 1373 |
+
site_select.options = options
|
| 1374 |
+
if options and site_select.value not in options.values():
|
| 1375 |
+
# When options is a dict, Select.value is the mapped value (code)
|
| 1376 |
+
site_select.value = next(iter(options.values()))
|
| 1377 |
+
|
| 1378 |
+
_update_site_view()
|
| 1379 |
+
|
| 1380 |
+
|
| 1381 |
+
def _update_site_view(event=None) -> None: # noqa: D401, ARG001
|
| 1382 |
+
"""Update site drill-down plots and table from current_analysis_df and site_select."""
|
| 1383 |
+
if current_analysis_df is None or current_analysis_df.empty:
|
| 1384 |
+
site_traffic_plot.object = None
|
| 1385 |
+
site_avail_plot.object = None
|
| 1386 |
+
site_degraded_table.value = pd.DataFrame()
|
| 1387 |
+
return
|
| 1388 |
+
|
| 1389 |
+
selected_code = site_select.value
|
| 1390 |
+
if selected_code is None:
|
| 1391 |
+
site_traffic_plot.object = None
|
| 1392 |
+
site_avail_plot.object = None
|
| 1393 |
+
site_degraded_table.value = pd.DataFrame()
|
| 1394 |
+
return
|
| 1395 |
+
|
| 1396 |
+
site_detail_df = current_analysis_df[
|
| 1397 |
+
current_analysis_df["code"] == int(selected_code)
|
| 1398 |
+
].copy()
|
| 1399 |
+
if site_detail_df.empty:
|
| 1400 |
+
site_traffic_plot.object = None
|
| 1401 |
+
site_avail_plot.object = None
|
| 1402 |
+
site_degraded_table.value = pd.DataFrame()
|
| 1403 |
+
return
|
| 1404 |
+
|
| 1405 |
+
site_detail_df = site_detail_df.sort_values("date")
|
| 1406 |
+
|
| 1407 |
+
# Traffic over time
|
| 1408 |
+
traffic_cols = [
|
| 1409 |
+
col
|
| 1410 |
+
for col in ["total_voice_trafic", "total_data_trafic"]
|
| 1411 |
+
if col in site_detail_df.columns
|
| 1412 |
+
]
|
| 1413 |
+
if traffic_cols:
|
| 1414 |
+
traffic_long = site_detail_df[["date"] + traffic_cols].melt(
|
| 1415 |
+
id_vars="date",
|
| 1416 |
+
value_vars=traffic_cols,
|
| 1417 |
+
var_name="metric",
|
| 1418 |
+
value_name="value",
|
| 1419 |
+
)
|
| 1420 |
+
fig_traffic = px.line(
|
| 1421 |
+
traffic_long,
|
| 1422 |
+
x="date",
|
| 1423 |
+
y="value",
|
| 1424 |
+
color="metric",
|
| 1425 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
| 1426 |
+
)
|
| 1427 |
+
fig_traffic.update_layout(
|
| 1428 |
+
template="plotly_white",
|
| 1429 |
+
plot_bgcolor="white",
|
| 1430 |
+
paper_bgcolor="white",
|
| 1431 |
+
)
|
| 1432 |
+
site_traffic_plot.object = fig_traffic
|
| 1433 |
+
else:
|
| 1434 |
+
site_traffic_plot.object = None
|
| 1435 |
+
|
| 1436 |
+
# Availability over time per RAT
|
| 1437 |
+
avail_cols: list[str] = []
|
| 1438 |
+
rename_map: dict[str, str] = {}
|
| 1439 |
+
if "2g_tch_avail" in site_detail_df.columns:
|
| 1440 |
+
avail_cols.append("2g_tch_avail")
|
| 1441 |
+
rename_map["2g_tch_avail"] = "2G"
|
| 1442 |
+
if "3g_cell_avail" in site_detail_df.columns:
|
| 1443 |
+
avail_cols.append("3g_cell_avail")
|
| 1444 |
+
rename_map["3g_cell_avail"] = "3G"
|
| 1445 |
+
if "lte_cell_avail" in site_detail_df.columns:
|
| 1446 |
+
avail_cols.append("lte_cell_avail")
|
| 1447 |
+
rename_map["lte_cell_avail"] = "LTE"
|
| 1448 |
+
|
| 1449 |
+
if avail_cols:
|
| 1450 |
+
avail_df = site_detail_df[["date"] + avail_cols].copy()
|
| 1451 |
+
avail_df = avail_df.rename(columns=rename_map)
|
| 1452 |
+
value_cols = [c for c in avail_df.columns if c != "date"]
|
| 1453 |
+
avail_long = avail_df.melt(
|
| 1454 |
+
id_vars="date",
|
| 1455 |
+
value_vars=value_cols,
|
| 1456 |
+
var_name="RAT",
|
| 1457 |
+
value_name="availability",
|
| 1458 |
+
)
|
| 1459 |
+
fig_avail = px.line(
|
| 1460 |
+
avail_long,
|
| 1461 |
+
x="date",
|
| 1462 |
+
y="availability",
|
| 1463 |
+
color="RAT",
|
| 1464 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
| 1465 |
+
)
|
| 1466 |
+
fig_avail.update_layout(
|
| 1467 |
+
template="plotly_white",
|
| 1468 |
+
plot_bgcolor="white",
|
| 1469 |
+
paper_bgcolor="white",
|
| 1470 |
+
)
|
| 1471 |
+
site_avail_plot.object = fig_avail
|
| 1472 |
+
|
| 1473 |
+
# Days with availability below SLA per RAT
|
| 1474 |
+
site_detail_df["date_only"] = site_detail_df["date"].dt.date
|
| 1475 |
+
degraded_rows_site: list[dict] = []
|
| 1476 |
+
for rat_col, rat_name, sla_value in [
|
| 1477 |
+
("2g_tch_avail", "2G", float(sla_2g.value)),
|
| 1478 |
+
("3g_cell_avail", "3G", float(sla_3g.value)),
|
| 1479 |
+
("lte_cell_avail", "LTE", float(sla_lte.value)),
|
| 1480 |
+
]:
|
| 1481 |
+
if rat_col in site_detail_df.columns:
|
| 1482 |
+
daily_site = (
|
| 1483 |
+
site_detail_df.groupby("date_only")[rat_col].mean().dropna()
|
| 1484 |
+
)
|
| 1485 |
+
mask = daily_site < sla_value
|
| 1486 |
+
for d, val in daily_site[mask].items():
|
| 1487 |
+
degraded_rows_site.append(
|
| 1488 |
+
{
|
| 1489 |
+
"RAT": rat_name,
|
| 1490 |
+
"date": d,
|
| 1491 |
+
"avg_availability": val,
|
| 1492 |
+
"SLA": sla_value,
|
| 1493 |
+
}
|
| 1494 |
+
)
|
| 1495 |
+
if degraded_rows_site:
|
| 1496 |
+
degraded_site_df = pd.DataFrame(degraded_rows_site)
|
| 1497 |
+
site_degraded_table.value = degraded_site_df.round(2)
|
| 1498 |
+
else:
|
| 1499 |
+
site_degraded_table.value = pd.DataFrame()
|
| 1500 |
+
else:
|
| 1501 |
+
site_avail_plot.object = None
|
| 1502 |
+
site_degraded_table.value = pd.DataFrame()
|
| 1503 |
+
|
| 1504 |
+
|
| 1505 |
+
def _update_city_controls() -> None:
|
| 1506 |
+
"""Populate city selection widget based on current_analysis_df and refresh view."""
|
| 1507 |
+
if current_analysis_df is None or current_analysis_df.empty:
|
| 1508 |
+
city_select.options = []
|
| 1509 |
+
city_select.value = None
|
| 1510 |
+
city_traffic_plot.object = None
|
| 1511 |
+
city_avail_plot.object = None
|
| 1512 |
+
city_degraded_table.value = pd.DataFrame()
|
| 1513 |
+
return
|
| 1514 |
+
|
| 1515 |
+
if (
|
| 1516 |
+
"City" not in current_analysis_df.columns
|
| 1517 |
+
or not current_analysis_df["City"].notna().any()
|
| 1518 |
+
):
|
| 1519 |
+
city_select.options = []
|
| 1520 |
+
city_select.value = None
|
| 1521 |
+
city_traffic_plot.object = None
|
| 1522 |
+
city_avail_plot.object = pd.DataFrame()
|
| 1523 |
+
city_degraded_table.value = pd.DataFrame()
|
| 1524 |
+
return
|
| 1525 |
+
|
| 1526 |
+
cities_df = (
|
| 1527 |
+
current_analysis_df[["City"]].dropna().drop_duplicates().sort_values(by="City")
|
| 1528 |
+
)
|
| 1529 |
+
options = cities_df["City"].tolist()
|
| 1530 |
+
city_select.options = options
|
| 1531 |
+
if options and city_select.value not in options:
|
| 1532 |
+
city_select.value = options[0]
|
| 1533 |
+
|
| 1534 |
+
_update_city_view()
|
| 1535 |
+
|
| 1536 |
+
|
| 1537 |
+
def _update_city_view(event=None) -> None: # noqa: D401, ARG001
|
| 1538 |
+
"""Update city drill-down plots and degraded days table based on city_select."""
|
| 1539 |
+
if current_analysis_df is None or current_analysis_df.empty:
|
| 1540 |
+
city_traffic_plot.object = None
|
| 1541 |
+
city_avail_plot.object = None
|
| 1542 |
+
city_degraded_table.value = pd.DataFrame()
|
| 1543 |
+
return
|
| 1544 |
+
|
| 1545 |
+
selected_city = city_select.value
|
| 1546 |
+
if not selected_city:
|
| 1547 |
+
city_traffic_plot.object = None
|
| 1548 |
+
city_avail_plot.object = None
|
| 1549 |
+
city_degraded_table.value = pd.DataFrame()
|
| 1550 |
+
return
|
| 1551 |
+
|
| 1552 |
+
city_detail_df = current_analysis_df[
|
| 1553 |
+
current_analysis_df["City"] == selected_city
|
| 1554 |
+
].copy()
|
| 1555 |
+
if city_detail_df.empty:
|
| 1556 |
+
city_traffic_plot.object = None
|
| 1557 |
+
city_avail_plot.object = None
|
| 1558 |
+
city_degraded_table.value = pd.DataFrame()
|
| 1559 |
+
return
|
| 1560 |
+
|
| 1561 |
+
city_detail_df = city_detail_df.sort_values("date")
|
| 1562 |
+
|
| 1563 |
+
# Traffic aggregated at city level
|
| 1564 |
+
traffic_cols_city = [
|
| 1565 |
+
col
|
| 1566 |
+
for col in ["total_voice_trafic", "total_data_trafic"]
|
| 1567 |
+
if col in city_detail_df.columns
|
| 1568 |
+
]
|
| 1569 |
+
if traffic_cols_city:
|
| 1570 |
+
city_traffic = (
|
| 1571 |
+
city_detail_df.groupby("date")[traffic_cols_city].sum().reset_index()
|
| 1572 |
+
)
|
| 1573 |
+
traffic_long_city = city_traffic.melt(
|
| 1574 |
+
id_vars="date",
|
| 1575 |
+
value_vars=traffic_cols_city,
|
| 1576 |
+
var_name="metric",
|
| 1577 |
+
value_name="value",
|
| 1578 |
+
)
|
| 1579 |
+
fig_traffic_city = px.line(
|
| 1580 |
+
traffic_long_city,
|
| 1581 |
+
x="date",
|
| 1582 |
+
y="value",
|
| 1583 |
+
color="metric",
|
| 1584 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
| 1585 |
+
)
|
| 1586 |
+
fig_traffic_city.update_layout(
|
| 1587 |
+
template="plotly_white",
|
| 1588 |
+
plot_bgcolor="white",
|
| 1589 |
+
paper_bgcolor="white",
|
| 1590 |
+
)
|
| 1591 |
+
city_traffic_plot.object = fig_traffic_city
|
| 1592 |
+
else:
|
| 1593 |
+
city_traffic_plot.object = None
|
| 1594 |
+
|
| 1595 |
+
# Availability aggregated at city level
|
| 1596 |
+
avail_cols_city: list[str] = []
|
| 1597 |
+
rename_map_city: dict[str, str] = {}
|
| 1598 |
+
if "2g_tch_avail" in city_detail_df.columns:
|
| 1599 |
+
avail_cols_city.append("2g_tch_avail")
|
| 1600 |
+
rename_map_city["2g_tch_avail"] = "2G"
|
| 1601 |
+
if "3g_cell_avail" in city_detail_df.columns:
|
| 1602 |
+
avail_cols_city.append("3g_cell_avail")
|
| 1603 |
+
rename_map_city["3g_cell_avail"] = "3G"
|
| 1604 |
+
if "lte_cell_avail" in city_detail_df.columns:
|
| 1605 |
+
avail_cols_city.append("lte_cell_avail")
|
| 1606 |
+
rename_map_city["lte_cell_avail"] = "LTE"
|
| 1607 |
+
|
| 1608 |
+
if avail_cols_city:
|
| 1609 |
+
avail_city_df = city_detail_df[["date"] + avail_cols_city].copy()
|
| 1610 |
+
avail_city_df = avail_city_df.rename(columns=rename_map_city)
|
| 1611 |
+
value_cols_city = [c for c in avail_city_df.columns if c != "date"]
|
| 1612 |
+
avail_long_city = avail_city_df.melt(
|
| 1613 |
+
id_vars="date",
|
| 1614 |
+
value_vars=value_cols_city,
|
| 1615 |
+
var_name="RAT",
|
| 1616 |
+
value_name="availability",
|
| 1617 |
+
)
|
| 1618 |
+
fig_avail_city = px.line(
|
| 1619 |
+
avail_long_city,
|
| 1620 |
+
x="date",
|
| 1621 |
+
y="availability",
|
| 1622 |
+
color="RAT",
|
| 1623 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
| 1624 |
+
)
|
| 1625 |
+
fig_avail_city.update_layout(
|
| 1626 |
+
template="plotly_white",
|
| 1627 |
+
plot_bgcolor="white",
|
| 1628 |
+
paper_bgcolor="white",
|
| 1629 |
+
)
|
| 1630 |
+
city_avail_plot.object = fig_avail_city
|
| 1631 |
+
|
| 1632 |
+
city_detail_df["date_only"] = city_detail_df["date"].dt.date
|
| 1633 |
+
degraded_rows_city: list[dict] = []
|
| 1634 |
+
for rat_col, rat_name, sla_value in [
|
| 1635 |
+
("2g_tch_avail", "2G", float(sla_2g.value)),
|
| 1636 |
+
("3g_cell_avail", "3G", float(sla_3g.value)),
|
| 1637 |
+
("lte_cell_avail", "LTE", float(sla_lte.value)),
|
| 1638 |
+
]:
|
| 1639 |
+
if rat_col in city_detail_df.columns:
|
| 1640 |
+
daily_city = (
|
| 1641 |
+
city_detail_df.groupby("date_only")[rat_col].mean().dropna()
|
| 1642 |
+
)
|
| 1643 |
+
mask_city = daily_city < sla_value
|
| 1644 |
+
for d, val in daily_city[mask_city].items():
|
| 1645 |
+
degraded_rows_city.append(
|
| 1646 |
+
{
|
| 1647 |
+
"RAT": rat_name,
|
| 1648 |
+
"date": d,
|
| 1649 |
+
"avg_availability": val,
|
| 1650 |
+
"SLA": sla_value,
|
| 1651 |
+
}
|
| 1652 |
+
)
|
| 1653 |
+
if degraded_rows_city:
|
| 1654 |
+
degraded_city_df = pd.DataFrame(degraded_rows_city)
|
| 1655 |
+
city_degraded_table.value = degraded_city_df.round(2)
|
| 1656 |
+
else:
|
| 1657 |
+
city_degraded_table.value = pd.DataFrame()
|
| 1658 |
+
else:
|
| 1659 |
+
city_avail_plot.object = None
|
| 1660 |
+
city_degraded_table.value = pd.DataFrame()
|
| 1661 |
+
|
| 1662 |
+
|
| 1663 |
+
def _update_daily_availability_view() -> None:
|
| 1664 |
+
"""Daily average availability per RAT over the full analysis_df."""
|
| 1665 |
+
if current_analysis_df is None or current_analysis_df.empty:
|
| 1666 |
+
daily_avail_plot.object = None
|
| 1667 |
+
daily_degraded_table.value = pd.DataFrame()
|
| 1668 |
+
return
|
| 1669 |
+
|
| 1670 |
+
temp_df = current_analysis_df.copy()
|
| 1671 |
+
if not any(
|
| 1672 |
+
col in temp_df.columns
|
| 1673 |
+
for col in ["2g_tch_avail", "3g_cell_avail", "lte_cell_avail"]
|
| 1674 |
+
):
|
| 1675 |
+
daily_avail_plot.object = None
|
| 1676 |
+
daily_degraded_table.value = pd.DataFrame()
|
| 1677 |
+
return
|
| 1678 |
+
|
| 1679 |
+
temp_df["date_only"] = temp_df["date"].dt.date
|
| 1680 |
+
|
| 1681 |
+
agg_dict: dict[str, str] = {}
|
| 1682 |
+
if "2g_tch_avail" in temp_df.columns:
|
| 1683 |
+
agg_dict["2g_tch_avail"] = "mean"
|
| 1684 |
+
if "3g_cell_avail" in temp_df.columns:
|
| 1685 |
+
agg_dict["3g_cell_avail"] = "mean"
|
| 1686 |
+
if "lte_cell_avail" in temp_df.columns:
|
| 1687 |
+
agg_dict["lte_cell_avail"] = "mean"
|
| 1688 |
+
|
| 1689 |
+
daily_avail = (
|
| 1690 |
+
temp_df.groupby("date_only", as_index=False).agg(agg_dict)
|
| 1691 |
+
if agg_dict
|
| 1692 |
+
else pd.DataFrame()
|
| 1693 |
+
)
|
| 1694 |
+
|
| 1695 |
+
if daily_avail.empty:
|
| 1696 |
+
daily_avail_plot.object = None
|
| 1697 |
+
daily_degraded_table.value = pd.DataFrame()
|
| 1698 |
+
return
|
| 1699 |
+
|
| 1700 |
+
rename_map: dict[str, str] = {}
|
| 1701 |
+
if "2g_tch_avail" in daily_avail.columns:
|
| 1702 |
+
rename_map["2g_tch_avail"] = "2G"
|
| 1703 |
+
if "3g_cell_avail" in daily_avail.columns:
|
| 1704 |
+
rename_map["3g_cell_avail"] = "3G"
|
| 1705 |
+
if "lte_cell_avail" in daily_avail.columns:
|
| 1706 |
+
rename_map["lte_cell_avail"] = "LTE"
|
| 1707 |
+
|
| 1708 |
+
daily_avail = daily_avail.rename(columns=rename_map)
|
| 1709 |
+
|
| 1710 |
+
value_cols = [c for c in daily_avail.columns if c != "date_only"]
|
| 1711 |
+
if not value_cols:
|
| 1712 |
+
daily_avail_plot.object = None
|
| 1713 |
+
daily_degraded_table.value = pd.DataFrame()
|
| 1714 |
+
return
|
| 1715 |
+
|
| 1716 |
+
daily_melt = daily_avail.melt(
|
| 1717 |
+
id_vars="date_only",
|
| 1718 |
+
value_vars=value_cols,
|
| 1719 |
+
var_name="RAT",
|
| 1720 |
+
value_name="availability",
|
| 1721 |
+
)
|
| 1722 |
+
|
| 1723 |
+
fig = px.line(
|
| 1724 |
+
daily_melt,
|
| 1725 |
+
x="date_only",
|
| 1726 |
+
y="availability",
|
| 1727 |
+
color="RAT",
|
| 1728 |
+
markers=True,
|
| 1729 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
| 1730 |
+
)
|
| 1731 |
+
fig.update_layout(
|
| 1732 |
+
template="plotly_white",
|
| 1733 |
+
plot_bgcolor="white",
|
| 1734 |
+
paper_bgcolor="white",
|
| 1735 |
+
)
|
| 1736 |
+
daily_avail_plot.object = fig
|
| 1737 |
+
|
| 1738 |
+
degraded_rows: list[dict] = []
|
| 1739 |
+
for rat_name, sla_value in [
|
| 1740 |
+
("2G", float(sla_2g.value)),
|
| 1741 |
+
("3G", float(sla_3g.value)),
|
| 1742 |
+
("LTE", float(sla_lte.value)),
|
| 1743 |
+
]:
|
| 1744 |
+
if rat_name in daily_avail.columns:
|
| 1745 |
+
series = daily_avail[rat_name]
|
| 1746 |
+
mask = series < sla_value
|
| 1747 |
+
for d, val in zip(daily_avail.loc[mask, "date_only"], series[mask]):
|
| 1748 |
+
degraded_rows.append(
|
| 1749 |
+
{
|
| 1750 |
+
"RAT": rat_name,
|
| 1751 |
+
"date": d,
|
| 1752 |
+
"avg_availability": val,
|
| 1753 |
+
"SLA": sla_value,
|
| 1754 |
+
}
|
| 1755 |
+
)
|
| 1756 |
+
|
| 1757 |
+
if degraded_rows:
|
| 1758 |
+
degraded_df = pd.DataFrame(degraded_rows)
|
| 1759 |
+
daily_degraded_table.value = degraded_df.round(2)
|
| 1760 |
+
else:
|
| 1761 |
+
daily_degraded_table.value = pd.DataFrame()
|
| 1762 |
+
|
| 1763 |
+
|
| 1764 |
+
def _update_top_sites_and_maps() -> None:
|
| 1765 |
+
"""Top traffic sites and geographic maps based on last analysis period."""
|
| 1766 |
+
if current_analysis_last_period_df is None or current_analysis_last_period_df.empty:
|
| 1767 |
+
top_data_sites_table.value = pd.DataFrame()
|
| 1768 |
+
top_voice_sites_table.value = pd.DataFrame()
|
| 1769 |
+
top_data_bar_plot.object = None
|
| 1770 |
+
top_voice_bar_plot.object = None
|
| 1771 |
+
data_map_plot.object = None
|
| 1772 |
+
voice_map_plot.object = None
|
| 1773 |
+
return
|
| 1774 |
+
|
| 1775 |
+
df = current_analysis_last_period_df
|
| 1776 |
+
n = int(number_of_top_trafic_sites.value or 25)
|
| 1777 |
+
|
| 1778 |
+
# Top sites by data traffic
|
| 1779 |
+
top_sites = (
|
| 1780 |
+
df.groupby(["code", "City"])["total_data_trafic"]
|
| 1781 |
+
.sum()
|
| 1782 |
+
.sort_values(ascending=False)
|
| 1783 |
+
.head(n)
|
| 1784 |
+
)
|
| 1785 |
+
top_data_sites_table.value = top_sites.sort_values(ascending=True).reset_index()
|
| 1786 |
+
|
| 1787 |
+
fig_data = px.bar(
|
| 1788 |
+
top_sites.reset_index(),
|
| 1789 |
+
y=top_sites.reset_index()[["City", "code"]].agg(
|
| 1790 |
+
lambda x: "_".join(map(str, x)), axis=1
|
| 1791 |
+
),
|
| 1792 |
+
x="total_data_trafic",
|
| 1793 |
+
title=f"Top {n} sites by data traffic",
|
| 1794 |
+
orientation="h",
|
| 1795 |
+
text="total_data_trafic",
|
| 1796 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
| 1797 |
+
)
|
| 1798 |
+
fig_data.update_layout(
|
| 1799 |
+
template="plotly_white",
|
| 1800 |
+
plot_bgcolor="white",
|
| 1801 |
+
paper_bgcolor="white",
|
| 1802 |
+
)
|
| 1803 |
+
top_data_bar_plot.object = fig_data
|
| 1804 |
+
|
| 1805 |
+
# Top sites by voice traffic
|
| 1806 |
+
top_sites_voice = (
|
| 1807 |
+
df.groupby(["code", "City"])["total_voice_trafic"]
|
| 1808 |
+
.sum()
|
| 1809 |
+
.sort_values(ascending=False)
|
| 1810 |
+
.head(n)
|
| 1811 |
+
)
|
| 1812 |
+
top_voice_sites_table.value = top_sites_voice.sort_values(
|
| 1813 |
+
ascending=True
|
| 1814 |
+
).reset_index()
|
| 1815 |
+
|
| 1816 |
+
fig_voice = px.bar(
|
| 1817 |
+
top_sites_voice.reset_index(),
|
| 1818 |
+
y=top_sites_voice.reset_index()[["City", "code"]].agg(
|
| 1819 |
+
lambda x: "_".join(map(str, x)), axis=1
|
| 1820 |
+
),
|
| 1821 |
+
x="total_voice_trafic",
|
| 1822 |
+
title=f"Top {n} sites by voice traffic",
|
| 1823 |
+
orientation="h",
|
| 1824 |
+
text="total_voice_trafic",
|
| 1825 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
| 1826 |
+
)
|
| 1827 |
+
fig_voice.update_layout(
|
| 1828 |
+
template="plotly_white",
|
| 1829 |
+
plot_bgcolor="white",
|
| 1830 |
+
paper_bgcolor="white",
|
| 1831 |
+
)
|
| 1832 |
+
top_voice_bar_plot.object = fig_voice
|
| 1833 |
+
|
| 1834 |
+
# Maps
|
| 1835 |
+
if {"Latitude", "Longitude"}.issubset(df.columns):
|
| 1836 |
+
min_size = 5
|
| 1837 |
+
max_size = 40
|
| 1838 |
+
|
| 1839 |
+
# Data traffic map
|
| 1840 |
+
df_data = (
|
| 1841 |
+
df.groupby(["code", "City", "Latitude", "Longitude"])["total_data_trafic"]
|
| 1842 |
+
.sum()
|
| 1843 |
+
.reset_index()
|
| 1844 |
+
)
|
| 1845 |
+
if not df_data.empty:
|
| 1846 |
+
traffic_data_min = df_data["total_data_trafic"].min()
|
| 1847 |
+
traffic_data_max = df_data["total_data_trafic"].max()
|
| 1848 |
+
if traffic_data_max > traffic_data_min:
|
| 1849 |
+
df_data["bubble_size"] = df_data["total_data_trafic"].apply(
|
| 1850 |
+
lambda x: min_size
|
| 1851 |
+
+ (max_size - min_size)
|
| 1852 |
+
* (x - traffic_data_min)
|
| 1853 |
+
/ (traffic_data_max - traffic_data_min)
|
| 1854 |
+
)
|
| 1855 |
+
else:
|
| 1856 |
+
df_data["bubble_size"] = min_size
|
| 1857 |
+
|
| 1858 |
+
custom_blue_red = [
|
| 1859 |
+
[0.0, "#4292c6"],
|
| 1860 |
+
[0.2, "#2171b5"],
|
| 1861 |
+
[0.4, "#084594"],
|
| 1862 |
+
[0.6, "#cb181d"],
|
| 1863 |
+
[0.8, "#a50f15"],
|
| 1864 |
+
[1.0, "#67000d"],
|
| 1865 |
+
]
|
| 1866 |
+
|
| 1867 |
+
fig_map_data = px.scatter_map(
|
| 1868 |
+
df_data,
|
| 1869 |
+
lat="Latitude",
|
| 1870 |
+
lon="Longitude",
|
| 1871 |
+
color="total_data_trafic",
|
| 1872 |
+
size="bubble_size",
|
| 1873 |
+
color_continuous_scale=custom_blue_red,
|
| 1874 |
+
size_max=max_size,
|
| 1875 |
+
zoom=10,
|
| 1876 |
+
height=600,
|
| 1877 |
+
title="Data traffic distribution",
|
| 1878 |
+
hover_data={"code": True, "total_data_trafic": True},
|
| 1879 |
+
hover_name="code",
|
| 1880 |
+
text=[str(x) for x in df_data["code"]],
|
| 1881 |
+
)
|
| 1882 |
+
fig_map_data.update_layout(
|
| 1883 |
+
mapbox_style="open-street-map",
|
| 1884 |
+
coloraxis_colorbar=dict(title="Total Data Traffic (MB)"),
|
| 1885 |
+
coloraxis=dict(cmin=traffic_data_min, cmax=traffic_data_max),
|
| 1886 |
+
font=dict(size=10, color="black"),
|
| 1887 |
+
)
|
| 1888 |
+
data_map_plot.object = fig_map_data
|
| 1889 |
+
else:
|
| 1890 |
+
data_map_plot.object = None
|
| 1891 |
+
|
| 1892 |
+
# Voice traffic map
|
| 1893 |
+
df_voice = (
|
| 1894 |
+
df.groupby(["code", "City", "Latitude", "Longitude"])["total_voice_trafic"]
|
| 1895 |
+
.sum()
|
| 1896 |
+
.reset_index()
|
| 1897 |
+
)
|
| 1898 |
+
if not df_voice.empty:
|
| 1899 |
+
traffic_voice_min = df_voice["total_voice_trafic"].min()
|
| 1900 |
+
traffic_voice_max = df_voice["total_voice_trafic"].max()
|
| 1901 |
+
if traffic_voice_max > traffic_voice_min:
|
| 1902 |
+
df_voice["bubble_size"] = df_voice["total_voice_trafic"].apply(
|
| 1903 |
+
lambda x: min_size
|
| 1904 |
+
+ (max_size - min_size)
|
| 1905 |
+
* (x - traffic_voice_min)
|
| 1906 |
+
/ (traffic_voice_max - traffic_voice_min)
|
| 1907 |
+
)
|
| 1908 |
+
else:
|
| 1909 |
+
df_voice["bubble_size"] = min_size
|
| 1910 |
+
|
| 1911 |
+
custom_blue_red = [
|
| 1912 |
+
[0.0, "#4292c6"],
|
| 1913 |
+
[0.2, "#2171b5"],
|
| 1914 |
+
[0.4, "#084594"],
|
| 1915 |
+
[0.6, "#cb181d"],
|
| 1916 |
+
[0.8, "#a50f15"],
|
| 1917 |
+
[1.0, "#67000d"],
|
| 1918 |
+
]
|
| 1919 |
+
|
| 1920 |
+
fig_map_voice = px.scatter_map(
|
| 1921 |
+
df_voice,
|
| 1922 |
+
lat="Latitude",
|
| 1923 |
+
lon="Longitude",
|
| 1924 |
+
color="total_voice_trafic",
|
| 1925 |
+
size="bubble_size",
|
| 1926 |
+
color_continuous_scale=custom_blue_red,
|
| 1927 |
+
size_max=max_size,
|
| 1928 |
+
zoom=10,
|
| 1929 |
+
height=600,
|
| 1930 |
+
title="Voice traffic distribution",
|
| 1931 |
+
hover_data={"code": True, "total_voice_trafic": True},
|
| 1932 |
+
hover_name="code",
|
| 1933 |
+
text=[str(x) for x in df_voice["code"]],
|
| 1934 |
+
)
|
| 1935 |
+
fig_map_voice.update_layout(
|
| 1936 |
+
mapbox_style="open-street-map",
|
| 1937 |
+
coloraxis_colorbar=dict(title="Total Voice Traffic (MB)"),
|
| 1938 |
+
coloraxis=dict(cmin=traffic_voice_min, cmax=traffic_voice_max),
|
| 1939 |
+
font=dict(size=10, color="black"),
|
| 1940 |
+
)
|
| 1941 |
+
voice_map_plot.object = fig_map_voice
|
| 1942 |
+
else:
|
| 1943 |
+
voice_map_plot.object = None
|
| 1944 |
+
else:
|
| 1945 |
+
data_map_plot.object = None
|
| 1946 |
+
voice_map_plot.object = None
|
| 1947 |
+
|
| 1948 |
+
|
| 1949 |
+
def _update_persistent_table_view(event=None) -> None: # noqa: D401, ARG001
|
| 1950 |
+
"""Update persistent issues table based on current_persistent_df and top_critical_n."""
|
| 1951 |
+
if current_persistent_df is None or current_persistent_df.empty:
|
| 1952 |
+
persistent_table.value = pd.DataFrame()
|
| 1953 |
+
return
|
| 1954 |
+
|
| 1955 |
+
n = int(top_critical_n_widget.value or 25)
|
| 1956 |
+
persistent_table.value = current_persistent_df.head(n).round(2)
|
| 1957 |
+
|
| 1958 |
+
|
| 1959 |
+
def _recompute_persistent_from_widget(event=None) -> None: # noqa: ARG001
|
| 1960 |
+
"""Recompute persistent issues when the minimum consecutive days widget changes."""
|
| 1961 |
+
global current_persistent_df
|
| 1962 |
+
|
| 1963 |
+
if (
|
| 1964 |
+
current_analysis_df is None
|
| 1965 |
+
or current_analysis_df.empty
|
| 1966 |
+
or current_multi_rat_df is None
|
| 1967 |
+
or current_multi_rat_df.empty
|
| 1968 |
+
):
|
| 1969 |
+
current_persistent_df = None
|
| 1970 |
+
persistent_table.value = pd.DataFrame()
|
| 1971 |
+
return
|
| 1972 |
+
|
| 1973 |
+
persistent_df = analyze_persistent_availability(
|
| 1974 |
+
current_analysis_df,
|
| 1975 |
+
current_multi_rat_df,
|
| 1976 |
+
float(sla_2g.value),
|
| 1977 |
+
float(sla_3g.value),
|
| 1978 |
+
float(sla_lte.value),
|
| 1979 |
+
int(min_persistent_days_widget.value),
|
| 1980 |
+
)
|
| 1981 |
+
|
| 1982 |
+
current_persistent_df = (
|
| 1983 |
+
persistent_df if persistent_df is not None and not persistent_df.empty else None
|
| 1984 |
+
)
|
| 1985 |
+
_update_persistent_table_view()
|
| 1986 |
+
|
| 1987 |
+
|
| 1988 |
+
def _build_export_bytes() -> bytes:
|
| 1989 |
+
"""Build Excel report bytes mirroring the Streamlit export structure."""
|
| 1990 |
+
if current_full_df is None:
|
| 1991 |
+
return b""
|
| 1992 |
+
|
| 1993 |
+
dfs: list[pd.DataFrame] = [
|
| 1994 |
+
current_full_df,
|
| 1995 |
+
(
|
| 1996 |
+
current_sum_pre_post_df
|
| 1997 |
+
if current_sum_pre_post_df is not None
|
| 1998 |
+
else pd.DataFrame()
|
| 1999 |
+
),
|
| 2000 |
+
(
|
| 2001 |
+
current_avg_pre_post_df
|
| 2002 |
+
if current_avg_pre_post_df is not None
|
| 2003 |
+
else pd.DataFrame()
|
| 2004 |
+
),
|
| 2005 |
+
(
|
| 2006 |
+
current_monthly_voice_df
|
| 2007 |
+
if current_monthly_voice_df is not None
|
| 2008 |
+
else pd.DataFrame()
|
| 2009 |
+
),
|
| 2010 |
+
(
|
| 2011 |
+
current_monthly_data_df
|
| 2012 |
+
if current_monthly_data_df is not None
|
| 2013 |
+
else pd.DataFrame()
|
| 2014 |
+
),
|
| 2015 |
+
(
|
| 2016 |
+
current_availability_summary_all_df
|
| 2017 |
+
if current_availability_summary_all_df is not None
|
| 2018 |
+
else pd.DataFrame()
|
| 2019 |
+
),
|
| 2020 |
+
current_site_2g_avail if current_site_2g_avail is not None else pd.DataFrame(),
|
| 2021 |
+
current_site_3g_avail if current_site_3g_avail is not None else pd.DataFrame(),
|
| 2022 |
+
(
|
| 2023 |
+
current_site_lte_avail
|
| 2024 |
+
if current_site_lte_avail is not None
|
| 2025 |
+
else pd.DataFrame()
|
| 2026 |
+
),
|
| 2027 |
+
(
|
| 2028 |
+
current_export_multi_rat_df
|
| 2029 |
+
if current_export_multi_rat_df is not None
|
| 2030 |
+
else pd.DataFrame()
|
| 2031 |
+
),
|
| 2032 |
+
(
|
| 2033 |
+
current_export_persistent_df
|
| 2034 |
+
if current_export_persistent_df is not None
|
| 2035 |
+
else pd.DataFrame()
|
| 2036 |
+
),
|
| 2037 |
+
]
|
| 2038 |
+
|
| 2039 |
+
sheet_names = [
|
| 2040 |
+
"Global_Trafic_Analysis",
|
| 2041 |
+
"Sum_pre_post_analysis",
|
| 2042 |
+
"Avg_pre_post_analysis",
|
| 2043 |
+
"Monthly_voice_analysis",
|
| 2044 |
+
"Monthly_data_analysis",
|
| 2045 |
+
"Availability_Summary_All_RAT",
|
| 2046 |
+
"TwoG_Availability_By_Site",
|
| 2047 |
+
"ThreeG_Availability_By_Site",
|
| 2048 |
+
"LTE_Availability_By_Site",
|
| 2049 |
+
"MultiRAT_Availability_By_Site",
|
| 2050 |
+
"Top_Critical_Sites",
|
| 2051 |
+
]
|
| 2052 |
+
|
| 2053 |
+
return write_dfs_to_excel(dfs, sheet_names, index=True)
|
| 2054 |
+
|
| 2055 |
+
|
| 2056 |
+
def _export_callback() -> bytes:
|
| 2057 |
+
# Use cached bytes from the last completed analysis to make download instant
|
| 2058 |
+
data = current_export_bytes or b""
|
| 2059 |
+
if not data:
|
| 2060 |
+
return io.BytesIO()
|
| 2061 |
+
# FileDownload expects a file path or file-like object, not raw bytes
|
| 2062 |
+
return io.BytesIO(data)
|
| 2063 |
+
|
| 2064 |
+
|
| 2065 |
+
def _df_to_csv_bytes(df: pd.DataFrame | None) -> io.BytesIO:
|
| 2066 |
+
if df is None or getattr(df, "empty", True): # handles None and empty DataFrame
|
| 2067 |
+
return io.BytesIO()
|
| 2068 |
+
return io.BytesIO(df.to_csv(index=False).encode("utf-8"))
|
| 2069 |
+
|
| 2070 |
+
|
| 2071 |
+
def _download_multi_rat_table() -> io.BytesIO:
|
| 2072 |
+
value = getattr(multi_rat_table, "value", None)
|
| 2073 |
+
return _df_to_csv_bytes(value if isinstance(value, pd.DataFrame) else None)
|
| 2074 |
+
|
| 2075 |
+
|
| 2076 |
+
def _download_persistent_table() -> io.BytesIO:
|
| 2077 |
+
value = getattr(persistent_table, "value", None)
|
| 2078 |
+
return _df_to_csv_bytes(value if isinstance(value, pd.DataFrame) else None)
|
| 2079 |
+
|
| 2080 |
+
|
| 2081 |
+
def _download_top_data_sites() -> io.BytesIO:
|
| 2082 |
+
value = getattr(top_data_sites_table, "value", None)
|
| 2083 |
+
return _df_to_csv_bytes(value if isinstance(value, pd.DataFrame) else None)
|
| 2084 |
+
|
| 2085 |
+
|
| 2086 |
+
def _download_top_voice_sites() -> io.BytesIO:
|
| 2087 |
+
value = getattr(top_voice_sites_table, "value", None)
|
| 2088 |
+
return _df_to_csv_bytes(value if isinstance(value, pd.DataFrame) else None)
|
| 2089 |
+
|
| 2090 |
+
|
| 2091 |
+
def _open_fullscreen_from_pane(plot_pane: pn.pane.Plotly, title: str) -> None:
|
| 2092 |
+
"""Open the given plot in the template modal as fullscreen view."""
|
| 2093 |
+
if plot_pane.object is None:
|
| 2094 |
+
return
|
| 2095 |
+
|
| 2096 |
+
fullscreen_plot.object = plot_pane.object
|
| 2097 |
+
content = pn.Column(
|
| 2098 |
+
pn.pane.Markdown(f"### {title}"),
|
| 2099 |
+
fullscreen_plot,
|
| 2100 |
+
sizing_mode="stretch_both",
|
| 2101 |
+
styles={"width": "95vw", "height": "90vh"},
|
| 2102 |
+
)
|
| 2103 |
+
|
| 2104 |
+
if "template" not in globals():
|
| 2105 |
+
return
|
| 2106 |
+
|
| 2107 |
+
# Always populate modal content first
|
| 2108 |
+
if hasattr(template, "modal"):
|
| 2109 |
+
try:
|
| 2110 |
+
template.modal[:] = [content]
|
| 2111 |
+
except Exception: # noqa: BLE001
|
| 2112 |
+
try:
|
| 2113 |
+
template.modal.clear()
|
| 2114 |
+
template.modal.append(content)
|
| 2115 |
+
except Exception: # noqa: BLE001
|
| 2116 |
+
pass
|
| 2117 |
+
|
| 2118 |
+
# Preferred API on templates
|
| 2119 |
+
if hasattr(template, "open_modal"):
|
| 2120 |
+
template.open_modal()
|
| 2121 |
+
return
|
| 2122 |
+
|
| 2123 |
+
# Fallbacks across versions
|
| 2124 |
+
if hasattr(template, "modal") and hasattr(template.modal, "open"):
|
| 2125 |
+
template.modal.open = True
|
| 2126 |
+
if hasattr(template, "modal") and hasattr(template.modal, "visible"):
|
| 2127 |
+
template.modal.visible = True
|
| 2128 |
+
|
| 2129 |
+
|
| 2130 |
+
def _on_site_traffic_fullscreen(event=None) -> None: # noqa: ARG001
|
| 2131 |
+
_open_fullscreen_from_pane(site_traffic_plot, "Site traffic over time")
|
| 2132 |
+
|
| 2133 |
+
|
| 2134 |
+
def _on_site_avail_fullscreen(event=None) -> None: # noqa: ARG001
|
| 2135 |
+
_open_fullscreen_from_pane(site_avail_plot, "Site availability over time")
|
| 2136 |
+
|
| 2137 |
+
|
| 2138 |
+
def _on_city_traffic_fullscreen(event=None) -> None: # noqa: ARG001
|
| 2139 |
+
_open_fullscreen_from_pane(city_traffic_plot, "City traffic over time")
|
| 2140 |
+
|
| 2141 |
+
|
| 2142 |
+
def _on_city_avail_fullscreen(event=None) -> None: # noqa: ARG001
|
| 2143 |
+
_open_fullscreen_from_pane(city_avail_plot, "City availability over time")
|
| 2144 |
+
|
| 2145 |
+
|
| 2146 |
+
def _on_daily_avail_fullscreen(event=None) -> None: # noqa: ARG001
|
| 2147 |
+
_open_fullscreen_from_pane(daily_avail_plot, "Daily average availability per RAT")
|
| 2148 |
+
|
| 2149 |
+
|
| 2150 |
+
def _on_top_data_fullscreen(event=None) -> None: # noqa: ARG001
|
| 2151 |
+
_open_fullscreen_from_pane(top_data_bar_plot, "Top sites by data traffic")
|
| 2152 |
+
|
| 2153 |
+
|
| 2154 |
+
def _on_top_voice_fullscreen(event=None) -> None: # noqa: ARG001
|
| 2155 |
+
_open_fullscreen_from_pane(top_voice_bar_plot, "Top sites by voice traffic")
|
| 2156 |
+
|
| 2157 |
+
|
| 2158 |
+
def _on_data_map_fullscreen(event=None) -> None: # noqa: ARG001
|
| 2159 |
+
_open_fullscreen_from_pane(data_map_plot, "Data traffic map")
|
| 2160 |
+
|
| 2161 |
+
|
| 2162 |
+
def _on_voice_map_fullscreen(event=None) -> None: # noqa: ARG001
|
| 2163 |
+
_open_fullscreen_from_pane(voice_map_plot, "Voice traffic map")
|
| 2164 |
+
|
| 2165 |
+
|
| 2166 |
+
# Reactive bindings for drill-down controls & export
|
| 2167 |
+
site_select.param.watch(_update_site_view, "value")
|
| 2168 |
+
city_select.param.watch(_update_city_view, "value")
|
| 2169 |
+
top_critical_n_widget.param.watch(_update_persistent_table_view, "value")
|
| 2170 |
+
number_of_top_trafic_sites.param.watch(_update_top_sites_and_maps, "value")
|
| 2171 |
+
min_persistent_days_widget.param.watch(_recompute_persistent_from_widget, "value")
|
| 2172 |
+
|
| 2173 |
+
export_button.callback = _export_callback
|
| 2174 |
+
multi_rat_download.callback = _download_multi_rat_table
|
| 2175 |
+
persistent_download.callback = _download_persistent_table
|
| 2176 |
+
top_data_download.callback = _download_top_data_sites
|
| 2177 |
+
top_voice_download.callback = _download_top_voice_sites
|
| 2178 |
+
|
| 2179 |
+
site_traffic_fullscreen_btn.on_click(_on_site_traffic_fullscreen)
|
| 2180 |
+
site_avail_fullscreen_btn.on_click(_on_site_avail_fullscreen)
|
| 2181 |
+
city_traffic_fullscreen_btn.on_click(_on_city_traffic_fullscreen)
|
| 2182 |
+
city_avail_fullscreen_btn.on_click(_on_city_avail_fullscreen)
|
| 2183 |
+
daily_avail_fullscreen_btn.on_click(_on_daily_avail_fullscreen)
|
| 2184 |
+
top_data_fullscreen_btn.on_click(_on_top_data_fullscreen)
|
| 2185 |
+
top_voice_fullscreen_btn.on_click(_on_top_voice_fullscreen)
|
| 2186 |
+
data_map_fullscreen_btn.on_click(_on_data_map_fullscreen)
|
| 2187 |
+
voice_map_fullscreen_btn.on_click(_on_voice_map_fullscreen)
|
| 2188 |
+
|
| 2189 |
+
|
| 2190 |
+
# --------------------------------------------------------------------------------------
|
| 2191 |
+
# Material Template layout
|
| 2192 |
+
# --------------------------------------------------------------------------------------
|
| 2193 |
+
|
| 2194 |
+
|
| 2195 |
+
template = pn.template.MaterialTemplate(
|
| 2196 |
+
title="📊 Global Trafic Analysis - Panel (2G / 3G / LTE)",
|
| 2197 |
+
)
|
| 2198 |
+
|
| 2199 |
+
# Ensure the template modal is large enough for fullscreen charts
|
| 2200 |
+
template.modal.sizing_mode = "stretch_both"
|
| 2201 |
+
template.modal.styles = {
|
| 2202 |
+
"width": "95vw",
|
| 2203 |
+
"height": "90vh",
|
| 2204 |
+
"maxWidth": "95vw",
|
| 2205 |
+
"maxHeight": "90vh",
|
| 2206 |
+
}
|
| 2207 |
+
|
| 2208 |
+
sidebar_content = pn.Column(
|
| 2209 |
+
"""This Panel app is a migration of the existing Streamlit-based global traffic analysis.
|
| 2210 |
+
|
| 2211 |
+
Upload the 3 traffic reports (2G / 3G / LTE), configure the analysis periods and SLAs, then run the analysis.
|
| 2212 |
+
|
| 2213 |
+
In this first step, the app only validates the pipeline and shows a lightweight summary of the inputs.\nFull KPIs and visualizations will be added progressively.""",
|
| 2214 |
+
"---",
|
| 2215 |
+
file_2g,
|
| 2216 |
+
file_3g,
|
| 2217 |
+
file_lte,
|
| 2218 |
+
"---",
|
| 2219 |
+
pre_range,
|
| 2220 |
+
post_range,
|
| 2221 |
+
last_range,
|
| 2222 |
+
"---",
|
| 2223 |
+
sla_2g,
|
| 2224 |
+
sla_3g,
|
| 2225 |
+
sla_lte,
|
| 2226 |
+
"---",
|
| 2227 |
+
number_of_top_trafic_sites,
|
| 2228 |
+
min_persistent_days_widget,
|
| 2229 |
+
top_critical_n_widget,
|
| 2230 |
+
"---",
|
| 2231 |
+
run_button,
|
| 2232 |
+
)
|
| 2233 |
+
|
| 2234 |
+
main_content = pn.Column(
|
| 2235 |
+
status_pane,
|
| 2236 |
+
pn.pane.Markdown("## Input datasets summary"),
|
| 2237 |
+
summary_table,
|
| 2238 |
+
pn.layout.Divider(),
|
| 2239 |
+
pn.pane.Markdown("## Summary Analysis Pre / Post"),
|
| 2240 |
+
sum_pre_post_table,
|
| 2241 |
+
pn.layout.Divider(),
|
| 2242 |
+
pn.pane.Markdown("## Availability vs SLA (per RAT)"),
|
| 2243 |
+
pn.Tabs(
|
| 2244 |
+
(
|
| 2245 |
+
"2G",
|
| 2246 |
+
pn.Column(
|
| 2247 |
+
summary_2g_table, pn.pane.Markdown("Worst 25 sites"), worst_2g_table
|
| 2248 |
+
),
|
| 2249 |
+
),
|
| 2250 |
+
(
|
| 2251 |
+
"3G",
|
| 2252 |
+
pn.Column(
|
| 2253 |
+
summary_3g_table, pn.pane.Markdown("Worst 25 sites"), worst_3g_table
|
| 2254 |
+
),
|
| 2255 |
+
),
|
| 2256 |
+
(
|
| 2257 |
+
"LTE",
|
| 2258 |
+
pn.Column(
|
| 2259 |
+
summary_lte_table, pn.pane.Markdown("Worst 25 sites"), worst_lte_table
|
| 2260 |
+
),
|
| 2261 |
+
),
|
| 2262 |
+
),
|
| 2263 |
+
pn.layout.Divider(),
|
| 2264 |
+
pn.pane.Markdown("## Multi-RAT Availability (post-period)"),
|
| 2265 |
+
multi_rat_table,
|
| 2266 |
+
multi_rat_download,
|
| 2267 |
+
pn.layout.Divider(),
|
| 2268 |
+
pn.pane.Markdown("## Persistent availability issues (critical sites)"),
|
| 2269 |
+
persistent_table,
|
| 2270 |
+
persistent_download,
|
| 2271 |
+
pn.layout.Divider(),
|
| 2272 |
+
pn.pane.Markdown("## Site drill-down: traffic and availability over time"),
|
| 2273 |
+
site_select,
|
| 2274 |
+
site_traffic_plot,
|
| 2275 |
+
site_traffic_fullscreen_btn,
|
| 2276 |
+
site_avail_plot,
|
| 2277 |
+
site_avail_fullscreen_btn,
|
| 2278 |
+
site_degraded_table,
|
| 2279 |
+
pn.layout.Divider(),
|
| 2280 |
+
pn.pane.Markdown("## City drill-down: traffic and availability over time"),
|
| 2281 |
+
city_select,
|
| 2282 |
+
city_traffic_plot,
|
| 2283 |
+
city_traffic_fullscreen_btn,
|
| 2284 |
+
city_avail_plot,
|
| 2285 |
+
city_avail_fullscreen_btn,
|
| 2286 |
+
city_degraded_table,
|
| 2287 |
+
pn.layout.Divider(),
|
| 2288 |
+
pn.pane.Markdown("## Daily average availability per RAT"),
|
| 2289 |
+
daily_avail_plot,
|
| 2290 |
+
daily_avail_fullscreen_btn,
|
| 2291 |
+
daily_degraded_table,
|
| 2292 |
+
pn.layout.Divider(),
|
| 2293 |
+
pn.pane.Markdown("## Top traffic sites and geographic maps (last period)"),
|
| 2294 |
+
pn.Row(
|
| 2295 |
+
pn.Column(
|
| 2296 |
+
pn.pane.Markdown("### Top sites by data traffic"),
|
| 2297 |
+
top_data_sites_table,
|
| 2298 |
+
top_data_download,
|
| 2299 |
+
top_data_bar_plot,
|
| 2300 |
+
top_data_fullscreen_btn,
|
| 2301 |
+
),
|
| 2302 |
+
pn.Column(
|
| 2303 |
+
pn.pane.Markdown("### Top sites by voice traffic"),
|
| 2304 |
+
top_voice_sites_table,
|
| 2305 |
+
top_voice_download,
|
| 2306 |
+
top_voice_bar_plot,
|
| 2307 |
+
top_voice_fullscreen_btn,
|
| 2308 |
+
),
|
| 2309 |
+
),
|
| 2310 |
+
pn.Row(
|
| 2311 |
+
pn.Column(
|
| 2312 |
+
pn.pane.Markdown("### Data traffic map"),
|
| 2313 |
+
data_map_plot,
|
| 2314 |
+
data_map_fullscreen_btn,
|
| 2315 |
+
),
|
| 2316 |
+
pn.Column(
|
| 2317 |
+
pn.pane.Markdown("### Voice traffic map"),
|
| 2318 |
+
voice_map_plot,
|
| 2319 |
+
voice_map_fullscreen_btn,
|
| 2320 |
+
),
|
| 2321 |
+
),
|
| 2322 |
+
pn.layout.Divider(),
|
| 2323 |
+
pn.pane.Markdown("## Export"),
|
| 2324 |
+
export_button,
|
| 2325 |
+
)
|
| 2326 |
+
|
| 2327 |
+
template.sidebar.append(sidebar_content)
|
| 2328 |
+
template.main.append(main_content)
|
| 2329 |
+
|
| 2330 |
+
|
| 2331 |
+
template.servable()
|