Adding site database and sheet
Browse files- queries/process_all_db.py +25 -2
- queries/process_site_db.py +168 -0
- queries/process_trx.py +31 -27
queries/process_all_db.py
CHANGED
|
@@ -3,6 +3,7 @@ from queries.process_gsm import combined_gsm_database, gsm_analaysis
|
|
| 3 |
from queries.process_invunit import process_invunit_data
|
| 4 |
from queries.process_lte import lte_fdd_analaysis, lte_tdd_analaysis, process_lte_data
|
| 5 |
from queries.process_mrbts import process_mrbts_data
|
|
|
|
| 6 |
from queries.process_wcdma import process_wcdma_data, wcdma_analaysis
|
| 7 |
from utils.convert_to_excel import convert_database_dfs, convert_dfs
|
| 8 |
from utils.utils_vars import UtilsVars
|
|
@@ -29,10 +30,21 @@ def all_dbs(filepath: str):
|
|
| 29 |
|
| 30 |
def process_all_tech_db(filepath: str):
|
| 31 |
all_dbs(filepath)
|
|
|
|
| 32 |
|
| 33 |
UtilsVars.final_all_database = convert_database_dfs(
|
| 34 |
UtilsVars.all_db_dfs,
|
| 35 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
)
|
| 37 |
|
| 38 |
|
|
@@ -41,6 +53,7 @@ def process_all_tech_db_with_stats(
|
|
| 41 |
# region_list: list
|
| 42 |
):
|
| 43 |
all_dbs(filepath)
|
|
|
|
| 44 |
gsm_analaysis(filepath)
|
| 45 |
wcdma_analaysis(
|
| 46 |
filepath,
|
|
@@ -50,7 +63,17 @@ def process_all_tech_db_with_stats(
|
|
| 50 |
lte_tdd_analaysis(filepath)
|
| 51 |
UtilsVars.final_all_database = convert_database_dfs(
|
| 52 |
UtilsVars.all_db_dfs,
|
| 53 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
)
|
| 55 |
|
| 56 |
|
|
|
|
| 3 |
from queries.process_invunit import process_invunit_data
|
| 4 |
from queries.process_lte import lte_fdd_analaysis, lte_tdd_analaysis, process_lte_data
|
| 5 |
from queries.process_mrbts import process_mrbts_data
|
| 6 |
+
from queries.process_site_db import site_db
|
| 7 |
from queries.process_wcdma import process_wcdma_data, wcdma_analaysis
|
| 8 |
from utils.convert_to_excel import convert_database_dfs, convert_dfs
|
| 9 |
from utils.utils_vars import UtilsVars
|
|
|
|
| 30 |
|
| 31 |
def process_all_tech_db(filepath: str):
|
| 32 |
all_dbs(filepath)
|
| 33 |
+
site_db()
|
| 34 |
|
| 35 |
UtilsVars.final_all_database = convert_database_dfs(
|
| 36 |
UtilsVars.all_db_dfs,
|
| 37 |
+
[
|
| 38 |
+
"GSM",
|
| 39 |
+
"MAL",
|
| 40 |
+
"TRX",
|
| 41 |
+
"WCDMA",
|
| 42 |
+
"LTE_FDD",
|
| 43 |
+
"LTE_TDD",
|
| 44 |
+
"MRBTS",
|
| 45 |
+
"INVUNIT",
|
| 46 |
+
"SITE",
|
| 47 |
+
],
|
| 48 |
)
|
| 49 |
|
| 50 |
|
|
|
|
| 53 |
# region_list: list
|
| 54 |
):
|
| 55 |
all_dbs(filepath)
|
| 56 |
+
site_db()
|
| 57 |
gsm_analaysis(filepath)
|
| 58 |
wcdma_analaysis(
|
| 59 |
filepath,
|
|
|
|
| 63 |
lte_tdd_analaysis(filepath)
|
| 64 |
UtilsVars.final_all_database = convert_database_dfs(
|
| 65 |
UtilsVars.all_db_dfs,
|
| 66 |
+
[
|
| 67 |
+
"GSM",
|
| 68 |
+
"MAL",
|
| 69 |
+
"TRX",
|
| 70 |
+
"WCDMA",
|
| 71 |
+
"LTE_FDD",
|
| 72 |
+
"LTE_TDD",
|
| 73 |
+
"MRBTS",
|
| 74 |
+
"INVUNIT",
|
| 75 |
+
"SITE",
|
| 76 |
+
],
|
| 77 |
)
|
| 78 |
|
| 79 |
|
queries/process_site_db.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
from utils.utils_vars import UtilsVars
|
| 4 |
+
|
| 5 |
+
GSM_COLUMNS = [
|
| 6 |
+
"code",
|
| 7 |
+
"site_name",
|
| 8 |
+
"site_config_band",
|
| 9 |
+
"number_trx_per_site",
|
| 10 |
+
"Longitude",
|
| 11 |
+
"Latitude",
|
| 12 |
+
"Hauteur",
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
+
WCDMA_COLUMNS = [
|
| 16 |
+
"code",
|
| 17 |
+
"site_name",
|
| 18 |
+
"site_config_band",
|
| 19 |
+
"Longitude",
|
| 20 |
+
"Latitude",
|
| 21 |
+
"Hauteur",
|
| 22 |
+
]
|
| 23 |
+
LTE_COLUMNS = [
|
| 24 |
+
"code",
|
| 25 |
+
"lnbts_name",
|
| 26 |
+
"site_config_band",
|
| 27 |
+
"Longitude",
|
| 28 |
+
"Latitude",
|
| 29 |
+
"Hauteur",
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def clean_bands(bands):
|
| 34 |
+
if pd.isna(bands):
|
| 35 |
+
return None
|
| 36 |
+
parts = [p for p in bands.split("/") if p != "nan"]
|
| 37 |
+
return "/".join(parts) if parts else None
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def site_db():
|
| 41 |
+
gsm_df: pd.DataFrame = UtilsVars.all_db_dfs[0]
|
| 42 |
+
wcdma_df: pd.DataFrame = UtilsVars.all_db_dfs[3]
|
| 43 |
+
lte_fdd_df: pd.DataFrame = UtilsVars.all_db_dfs[4]
|
| 44 |
+
lte_tdd_df: pd.DataFrame = UtilsVars.all_db_dfs[5]
|
| 45 |
+
|
| 46 |
+
gsm_df = gsm_df[GSM_COLUMNS]
|
| 47 |
+
gsm_df = gsm_df.rename(
|
| 48 |
+
columns={
|
| 49 |
+
"code": "code",
|
| 50 |
+
"site_name": "gsm_name",
|
| 51 |
+
"site_config_band": "2G_Bands",
|
| 52 |
+
}
|
| 53 |
+
)
|
| 54 |
+
gsm_df.drop_duplicates(subset=["code"], keep="first", inplace=True)
|
| 55 |
+
|
| 56 |
+
wcdma_df = wcdma_df[WCDMA_COLUMNS]
|
| 57 |
+
wcdma_df = wcdma_df.rename(
|
| 58 |
+
columns={
|
| 59 |
+
"code": "code",
|
| 60 |
+
"site_name": "wcdma_name",
|
| 61 |
+
"site_config_band": "3G_Bands",
|
| 62 |
+
}
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
wcdma_df.drop_duplicates(subset=["code"], keep="first", inplace=True)
|
| 66 |
+
|
| 67 |
+
lte_fdd_df = lte_fdd_df[LTE_COLUMNS]
|
| 68 |
+
lte_tdd_df = lte_tdd_df[LTE_COLUMNS]
|
| 69 |
+
lte_df: pd.DataFrame = pd.concat([lte_fdd_df, lte_tdd_df], ignore_index=False)
|
| 70 |
+
|
| 71 |
+
lte_df = lte_df.rename(
|
| 72 |
+
columns={
|
| 73 |
+
"code": "code",
|
| 74 |
+
"lnbts_name": "lte_name",
|
| 75 |
+
"site_config_band": "4G_Bands",
|
| 76 |
+
}
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
lte_df.drop_duplicates(subset=["code"], keep="first", inplace=True)
|
| 80 |
+
|
| 81 |
+
################################# CODE DATAFRAME#############################
|
| 82 |
+
|
| 83 |
+
gsm_code_df: pd.DataFrame = (
|
| 84 |
+
gsm_df[
|
| 85 |
+
[
|
| 86 |
+
"code",
|
| 87 |
+
"Longitude",
|
| 88 |
+
"Latitude",
|
| 89 |
+
"Hauteur",
|
| 90 |
+
]
|
| 91 |
+
].copy()
|
| 92 |
+
if gsm_df is not None
|
| 93 |
+
else pd.DataFrame()
|
| 94 |
+
)
|
| 95 |
+
wcdma_code_df: pd.DataFrame = (
|
| 96 |
+
wcdma_df[["code", "Longitude", "Latitude", "Hauteur"]].copy()
|
| 97 |
+
if wcdma_df is not None
|
| 98 |
+
else pd.DataFrame()
|
| 99 |
+
)
|
| 100 |
+
lte_code_df: pd.DataFrame = (
|
| 101 |
+
lte_df[
|
| 102 |
+
[
|
| 103 |
+
"code",
|
| 104 |
+
"Longitude",
|
| 105 |
+
"Latitude",
|
| 106 |
+
"Hauteur",
|
| 107 |
+
]
|
| 108 |
+
].copy()
|
| 109 |
+
if lte_df is not None
|
| 110 |
+
else pd.DataFrame()
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
code_df: pd.DataFrame = pd.concat(
|
| 114 |
+
[gsm_code_df, wcdma_code_df, lte_code_df], ignore_index=True
|
| 115 |
+
)
|
| 116 |
+
code_df.drop_duplicates(subset=["code"], keep="first", inplace=True)
|
| 117 |
+
code_df.dropna(subset=["code"], inplace=True)
|
| 118 |
+
# order by code
|
| 119 |
+
code_df.sort_values(by=["code"], inplace=True)
|
| 120 |
+
|
| 121 |
+
# print(code_df)
|
| 122 |
+
# ################################# SITE DATAFRAME#############################
|
| 123 |
+
gsm_df_final = gsm_df[
|
| 124 |
+
[
|
| 125 |
+
"code",
|
| 126 |
+
"gsm_name",
|
| 127 |
+
"2G_Bands",
|
| 128 |
+
"number_trx_per_site",
|
| 129 |
+
]
|
| 130 |
+
].copy()
|
| 131 |
+
wcdma_df_final = wcdma_df[["code", "wcdma_name", "3G_Bands"]].copy()
|
| 132 |
+
lte_df_final = lte_df[["code", "lte_name", "4G_Bands"]].copy()
|
| 133 |
+
|
| 134 |
+
site_df = pd.merge(code_df, gsm_df_final, how="left", on="code")
|
| 135 |
+
site_df = pd.merge(site_df, wcdma_df_final, how="left", on="code")
|
| 136 |
+
site_df = pd.merge(site_df, lte_df_final, how="left", on="code")
|
| 137 |
+
# order by code
|
| 138 |
+
site_df["site_name"] = (
|
| 139 |
+
site_df["gsm_name"].fillna(site_df["wcdma_name"]).fillna(site_df["lte_name"])
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
site_df["all_bands"] = (
|
| 143 |
+
(site_df[["2G_Bands", "3G_Bands", "4G_Bands"]])
|
| 144 |
+
.astype(str)
|
| 145 |
+
.apply("/".join, axis=1)
|
| 146 |
+
)
|
| 147 |
+
site_df["all_bands"] = site_df["all_bands"].apply(clean_bands)
|
| 148 |
+
|
| 149 |
+
site_df = site_df[
|
| 150 |
+
[
|
| 151 |
+
"code",
|
| 152 |
+
"site_name",
|
| 153 |
+
"2G_Bands",
|
| 154 |
+
"3G_Bands",
|
| 155 |
+
"4G_Bands",
|
| 156 |
+
"all_bands",
|
| 157 |
+
"number_trx_per_site",
|
| 158 |
+
"Longitude",
|
| 159 |
+
"Latitude",
|
| 160 |
+
"Hauteur",
|
| 161 |
+
]
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
site_df.sort_values(by=["code"], inplace=True)
|
| 165 |
+
|
| 166 |
+
UtilsVars.all_db_dfs.append(site_df)
|
| 167 |
+
|
| 168 |
+
print(site_df)
|
queries/process_trx.py
CHANGED
|
@@ -11,6 +11,7 @@ TRX_COLUMNS = [
|
|
| 11 |
"TRX_TCH",
|
| 12 |
"number_trx_per_cell",
|
| 13 |
"number_trx_per_bcf",
|
|
|
|
| 14 |
]
|
| 15 |
|
| 16 |
|
|
@@ -22,6 +23,7 @@ TRX_BTS_COLUMNS = [
|
|
| 22 |
"ID_BTS",
|
| 23 |
"number_trx_per_cell",
|
| 24 |
"number_trx_per_bcf",
|
|
|
|
| 25 |
"code",
|
| 26 |
"name",
|
| 27 |
"adminState",
|
|
@@ -101,32 +103,6 @@ def process_brute_trx_data(file_path: str):
|
|
| 101 |
return df_trx
|
| 102 |
|
| 103 |
|
| 104 |
-
def process_trx_data(file_path: str):
|
| 105 |
-
|
| 106 |
-
df_gsm_trx = process_brute_trx_data(file_path=file_path).copy()
|
| 107 |
-
|
| 108 |
-
bcch = df_gsm_trx[df_gsm_trx["channel0Type"] == 4]
|
| 109 |
-
tch = df_gsm_trx[df_gsm_trx["channel0Type"] != 4][["ID_BTS", "initialFrequency"]]
|
| 110 |
-
|
| 111 |
-
tch = tch.pivot_table(
|
| 112 |
-
index="ID_BTS",
|
| 113 |
-
values="initialFrequency",
|
| 114 |
-
aggfunc=lambda x: ",".join(map(str, x)),
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
tch = tch.reset_index()
|
| 118 |
-
|
| 119 |
-
# rename the columns
|
| 120 |
-
tch.columns = ["ID_BTS", "TRX_TCH"]
|
| 121 |
-
|
| 122 |
-
df_gsm_trx = pd.merge(bcch, tch, on="ID_BTS", how="left")
|
| 123 |
-
# rename "initialFrequency" to "BCCH"
|
| 124 |
-
df_gsm_trx = df_gsm_trx.rename(columns={"initialFrequency": "BCCH"})
|
| 125 |
-
df_gsm_trx = df_gsm_trx[TRX_COLUMNS]
|
| 126 |
-
|
| 127 |
-
return df_gsm_trx
|
| 128 |
-
|
| 129 |
-
|
| 130 |
def process_trx_with_bts_name(file_path: str):
|
| 131 |
|
| 132 |
df_gsm_trx = process_brute_trx_data(file_path=file_path).copy()
|
|
@@ -137,7 +113,9 @@ def process_trx_with_bts_name(file_path: str):
|
|
| 137 |
df_trx_bts_name: pd.DataFrame = pd.merge(
|
| 138 |
df_gsm_trx, df_bts, on="ID_BTS", how="left"
|
| 139 |
)
|
| 140 |
-
|
|
|
|
|
|
|
| 141 |
# Filter columns strictly by names like "channelXType"
|
| 142 |
channel_columns = [
|
| 143 |
col
|
|
@@ -211,6 +189,32 @@ def process_trx_with_bts_name(file_path: str):
|
|
| 211 |
return df_trx_bts_name
|
| 212 |
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
def process_trx_with_bts_name_data_to_excel(file_path: str):
|
| 215 |
"""
|
| 216 |
Process data from the specified file path and save it to a excel file.
|
|
|
|
| 11 |
"TRX_TCH",
|
| 12 |
"number_trx_per_cell",
|
| 13 |
"number_trx_per_bcf",
|
| 14 |
+
"number_trx_per_site",
|
| 15 |
]
|
| 16 |
|
| 17 |
|
|
|
|
| 23 |
"ID_BTS",
|
| 24 |
"number_trx_per_cell",
|
| 25 |
"number_trx_per_bcf",
|
| 26 |
+
"number_trx_per_site",
|
| 27 |
"code",
|
| 28 |
"name",
|
| 29 |
"adminState",
|
|
|
|
| 103 |
return df_trx
|
| 104 |
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
def process_trx_with_bts_name(file_path: str):
|
| 107 |
|
| 108 |
df_gsm_trx = process_brute_trx_data(file_path=file_path).copy()
|
|
|
|
| 113 |
df_trx_bts_name: pd.DataFrame = pd.merge(
|
| 114 |
df_gsm_trx, df_bts, on="ID_BTS", how="left"
|
| 115 |
)
|
| 116 |
+
df_trx_bts_name["number_trx_per_site"] = df_trx_bts_name.groupby("code")[
|
| 117 |
+
"code"
|
| 118 |
+
].transform("count")
|
| 119 |
# Filter columns strictly by names like "channelXType"
|
| 120 |
channel_columns = [
|
| 121 |
col
|
|
|
|
| 189 |
return df_trx_bts_name
|
| 190 |
|
| 191 |
|
| 192 |
+
def process_trx_data(file_path: str):
|
| 193 |
+
|
| 194 |
+
df_gsm_trx = process_trx_with_bts_name(file_path=file_path).copy()
|
| 195 |
+
|
| 196 |
+
bcch = df_gsm_trx[df_gsm_trx["channel0Type"] == 4]
|
| 197 |
+
tch = df_gsm_trx[df_gsm_trx["channel0Type"] != 4][["ID_BTS", "initialFrequency"]]
|
| 198 |
+
|
| 199 |
+
tch = tch.pivot_table(
|
| 200 |
+
index="ID_BTS",
|
| 201 |
+
values="initialFrequency",
|
| 202 |
+
aggfunc=lambda x: ",".join(map(str, x)),
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
tch = tch.reset_index()
|
| 206 |
+
|
| 207 |
+
# rename the columns
|
| 208 |
+
tch.columns = ["ID_BTS", "TRX_TCH"]
|
| 209 |
+
|
| 210 |
+
df_gsm_trx = pd.merge(bcch, tch, on="ID_BTS", how="left")
|
| 211 |
+
# rename "initialFrequency" to "BCCH"
|
| 212 |
+
df_gsm_trx = df_gsm_trx.rename(columns={"initialFrequency": "BCCH"})
|
| 213 |
+
df_gsm_trx = df_gsm_trx[TRX_COLUMNS]
|
| 214 |
+
|
| 215 |
+
return df_gsm_trx
|
| 216 |
+
|
| 217 |
+
|
| 218 |
def process_trx_with_bts_name_data_to_excel(file_path: str):
|
| 219 |
"""
|
| 220 |
Process data from the specified file path and save it to a excel file.
|