Add LCG analysis Part1
Browse files- app.py +4 -0
- apps/kpi_analysis/lcg_analysis.py +202 -0
- process_kpi/process_lcg_capacity.py +286 -0
- utils/kpi_analysis_utils.py +28 -0
app.py
CHANGED
|
@@ -146,6 +146,10 @@ if check_password():
|
|
| 146 |
"apps/kpi_analysis/wcel_capacity.py",
|
| 147 |
title=" π WCEL Capacity Analysis",
|
| 148 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
st.Page(
|
| 150 |
"apps/kpi_analysis/lte_capacity.py",
|
| 151 |
title=" π LTE Capacity Analysis",
|
|
|
|
| 146 |
"apps/kpi_analysis/wcel_capacity.py",
|
| 147 |
title=" π WCEL Capacity Analysis",
|
| 148 |
),
|
| 149 |
+
st.Page(
|
| 150 |
+
"apps/kpi_analysis/lcg_analysis.py",
|
| 151 |
+
title=" π LCG Capacity Analysis",
|
| 152 |
+
),
|
| 153 |
st.Page(
|
| 154 |
"apps/kpi_analysis/lte_capacity.py",
|
| 155 |
title=" π LTE Capacity Analysis",
|
apps/kpi_analysis/lcg_analysis.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import plotly.express as px
|
| 3 |
+
import streamlit as st
|
| 4 |
+
|
| 5 |
+
from process_kpi.process_lcg_capacity import load_and_process_lcg_data
|
| 6 |
+
from utils.convert_to_excel import convert_dfs
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class LcgCapacity:
|
| 10 |
+
final_results = None
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Streamlit UI
|
| 14 |
+
st.title(" π LCG Analysis")
|
| 15 |
+
doc_col, image_col = st.columns(2)
|
| 16 |
+
|
| 17 |
+
with doc_col:
|
| 18 |
+
st.write(
|
| 19 |
+
"""This app allows you to analyze the LCG of a network.
|
| 20 |
+
It provides insights into the utilization of LCG resources,
|
| 21 |
+
helping you identify potential capacity issues and plan for upgrades.
|
| 22 |
+
|
| 23 |
+
The report should be run with a minimum of 3 days of data.
|
| 24 |
+
- Daily Aggregated
|
| 25 |
+
- LCG level
|
| 26 |
+
- Exported in CSV format.
|
| 27 |
+
"""
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
with image_col:
|
| 31 |
+
st.image("./assets/wcel_capacity.png", width=400)
|
| 32 |
+
|
| 33 |
+
uploaded_file = st.file_uploader("Upload LCG report in CSV format", type="csv")
|
| 34 |
+
|
| 35 |
+
param_col1, param_col2, param_col3 = st.columns(3)
|
| 36 |
+
param_col4, param_col5, param_col6 = st.columns(3)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# num_last_days
|
| 40 |
+
# num_threshold_days
|
| 41 |
+
# lcg_utilization_threshold
|
| 42 |
+
# difference_between_lcgs
|
| 43 |
+
|
| 44 |
+
if uploaded_file is not None:
|
| 45 |
+
LcgCapacity.final_results = None
|
| 46 |
+
with param_col1:
|
| 47 |
+
num_last_days = st.number_input(
|
| 48 |
+
"Number of days for analysis",
|
| 49 |
+
min_value=3,
|
| 50 |
+
max_value=30,
|
| 51 |
+
value=7,
|
| 52 |
+
)
|
| 53 |
+
with param_col2:
|
| 54 |
+
num_threshold_days = st.number_input(
|
| 55 |
+
"Number of days for threshold",
|
| 56 |
+
min_value=1,
|
| 57 |
+
max_value=30,
|
| 58 |
+
value=2,
|
| 59 |
+
)
|
| 60 |
+
with param_col3:
|
| 61 |
+
lcg_utilization_threshold = st.number_input(
|
| 62 |
+
"LCG Utilization Threshold (%)",
|
| 63 |
+
min_value=0,
|
| 64 |
+
max_value=100,
|
| 65 |
+
value=80,
|
| 66 |
+
)
|
| 67 |
+
with param_col4:
|
| 68 |
+
difference_between_lcgs = st.number_input(
|
| 69 |
+
"Difference between LCgs (%)",
|
| 70 |
+
min_value=0,
|
| 71 |
+
max_value=100,
|
| 72 |
+
value=20,
|
| 73 |
+
)
|
| 74 |
+
if st.button("Analyze Data", type="primary"):
|
| 75 |
+
# Input validation
|
| 76 |
+
try:
|
| 77 |
+
if num_threshold_days > num_last_days:
|
| 78 |
+
st.warning("Number of threshold days cannot be greater than number of analysis days")
|
| 79 |
+
st.stop()
|
| 80 |
+
|
| 81 |
+
if num_last_days < 3:
|
| 82 |
+
st.warning("Analysis period should be at least 3 days for meaningful results")
|
| 83 |
+
st.stop()
|
| 84 |
+
|
| 85 |
+
if lcg_utilization_threshold <= 0 or lcg_utilization_threshold > 100:
|
| 86 |
+
st.warning("LCG utilization threshold must be between 1 and 100")
|
| 87 |
+
st.stop()
|
| 88 |
+
|
| 89 |
+
with st.spinner("Processing data..."):
|
| 90 |
+
results = load_and_process_lcg_data(
|
| 91 |
+
uploaded_file,
|
| 92 |
+
num_last_days,
|
| 93 |
+
num_threshold_days,
|
| 94 |
+
lcg_utilization_threshold,
|
| 95 |
+
difference_between_lcgs,
|
| 96 |
+
)
|
| 97 |
+
except Exception as e:
|
| 98 |
+
st.error(f"An error occurred during input validation: {str(e)}")
|
| 99 |
+
st.stop()
|
| 100 |
+
if results is not None:
|
| 101 |
+
lcg_analysis_df = results[0]
|
| 102 |
+
kpi_df = results[1]
|
| 103 |
+
LcgCapacity.final_results = convert_dfs(
|
| 104 |
+
[lcg_analysis_df, kpi_df], ["lcg_analysis", "kpi"]
|
| 105 |
+
)
|
| 106 |
+
st.download_button(
|
| 107 |
+
on_click="ignore",
|
| 108 |
+
type="primary",
|
| 109 |
+
label="Download the Analysis Report",
|
| 110 |
+
data=LcgCapacity.final_results,
|
| 111 |
+
file_name="LCG_Capacity_Report.xlsx",
|
| 112 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 113 |
+
)
|
| 114 |
+
st.write(lcg_analysis_df)
|
| 115 |
+
# Add dataframe and Pie chart with "final_comments" distribution
|
| 116 |
+
st.markdown("***")
|
| 117 |
+
st.markdown(":blue[**Final comment distribution**]")
|
| 118 |
+
final_comments_df = (
|
| 119 |
+
lcg_analysis_df.groupby("final_comments")
|
| 120 |
+
.size()
|
| 121 |
+
.reset_index(name="count")
|
| 122 |
+
.sort_values(by="count", ascending=False)
|
| 123 |
+
)
|
| 124 |
+
final_comments_df["percent"] = (
|
| 125 |
+
final_comments_df["count"] / final_comments_df["count"].sum()
|
| 126 |
+
) * 100
|
| 127 |
+
final_comments_col1, final_comments_col2 = st.columns((1, 3))
|
| 128 |
+
with final_comments_col1:
|
| 129 |
+
st.write(final_comments_df)
|
| 130 |
+
with final_comments_col2:
|
| 131 |
+
fig = px.pie(
|
| 132 |
+
final_comments_df,
|
| 133 |
+
names="final_comments",
|
| 134 |
+
values="count",
|
| 135 |
+
hover_name="final_comments",
|
| 136 |
+
hover_data=["count", "percent"],
|
| 137 |
+
title="Final Comments Distribution",
|
| 138 |
+
)
|
| 139 |
+
fig.update_layout(height=600)
|
| 140 |
+
fig.update_traces(
|
| 141 |
+
texttemplate="<b>%{label}</b><br> %{value} <b>(%{customdata[1]:.1f}%)</b>",
|
| 142 |
+
textfont_size=15,
|
| 143 |
+
textposition="outside",
|
| 144 |
+
)
|
| 145 |
+
st.plotly_chart(fig)
|
| 146 |
+
|
| 147 |
+
# Add dataframe and Bar chart with "final_comments" distribution per Region
|
| 148 |
+
st.markdown("***")
|
| 149 |
+
st.markdown(":blue[**Final comment distribution per Region**]")
|
| 150 |
+
final_comments_df = (
|
| 151 |
+
lcg_analysis_df.groupby(["Region", "final_comments"])
|
| 152 |
+
.size()
|
| 153 |
+
.reset_index(name="count")
|
| 154 |
+
.sort_values(by="count", ascending=False)
|
| 155 |
+
)
|
| 156 |
+
final_comments_col1, final_comments_col2 = st.columns((1, 3))
|
| 157 |
+
with final_comments_col1:
|
| 158 |
+
st.write(final_comments_df)
|
| 159 |
+
with final_comments_col2:
|
| 160 |
+
fig = px.bar(
|
| 161 |
+
final_comments_df,
|
| 162 |
+
x="Region",
|
| 163 |
+
y="count",
|
| 164 |
+
color="final_comments",
|
| 165 |
+
title="Final Comments Distribution per Region",
|
| 166 |
+
text="count",
|
| 167 |
+
)
|
| 168 |
+
fig.update_traces(textposition="outside")
|
| 169 |
+
fig.update_layout(height=600)
|
| 170 |
+
st.plotly_chart(fig)
|
| 171 |
+
|
| 172 |
+
# Add map plot with scatter_map with code ,Longitude,Latitude,final_comments
|
| 173 |
+
st.markdown("***")
|
| 174 |
+
st.markdown(":blue[**Final comments distribution**]")
|
| 175 |
+
final_comments_map_df = lcg_analysis_df[
|
| 176 |
+
["code", "Longitude", "Latitude", "final_comments"]
|
| 177 |
+
].dropna(subset=["code", "Longitude", "Latitude", "final_comments"])
|
| 178 |
+
|
| 179 |
+
# replace empty strings with "Cell OK"
|
| 180 |
+
# final_comments_map_df["final_comments"] = final_comments_map_df[
|
| 181 |
+
# "final_comments"
|
| 182 |
+
# ].replace("", "Cell OK")
|
| 183 |
+
# add size column equalt to 20
|
| 184 |
+
final_comments_map_df["size"] = 20
|
| 185 |
+
|
| 186 |
+
fig = px.scatter_map(
|
| 187 |
+
final_comments_map_df,
|
| 188 |
+
lat="Latitude",
|
| 189 |
+
lon="Longitude",
|
| 190 |
+
color="final_comments",
|
| 191 |
+
size="size",
|
| 192 |
+
zoom=10,
|
| 193 |
+
height=600,
|
| 194 |
+
title="Final Comments Distribution",
|
| 195 |
+
hover_data={
|
| 196 |
+
"code": True,
|
| 197 |
+
"final_comments": True,
|
| 198 |
+
},
|
| 199 |
+
hover_name="code",
|
| 200 |
+
)
|
| 201 |
+
fig.update_layout(mapbox_style="open-street-map")
|
| 202 |
+
st.plotly_chart(fig)
|
process_kpi/process_lcg_capacity.py
ADDED
|
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
from utils.kpi_analysis_utils import (
|
| 5 |
+
analyze_lcg_utilization,
|
| 6 |
+
combine_comments,
|
| 7 |
+
create_daily_date,
|
| 8 |
+
create_dfs_per_kpi,
|
| 9 |
+
kpi_naming_cleaning,
|
| 10 |
+
)
|
| 11 |
+
from utils.utils_vars import get_physical_db
|
| 12 |
+
|
| 13 |
+
lcg_comments_mapping = {
|
| 14 |
+
"2": "No Congestion",
|
| 15 |
+
"1": "No Congestion",
|
| 16 |
+
"lcg1 exceeded threshold, lcg2 exceeded threshold, 2": "Need BB SU upgrage",
|
| 17 |
+
"lcg1 exceeded threshold, 2": "Need LCG balancing",
|
| 18 |
+
"lcg1 exceeded threshold, 1": "Need BB SU upgrage",
|
| 19 |
+
"lcg2 exceeded threshold, 2": "Need LCG balancing",
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
KPI_COLUMNS = [
|
| 24 |
+
"date",
|
| 25 |
+
"WBTS_name",
|
| 26 |
+
"lcg_id",
|
| 27 |
+
"BB_SU_LCG_MAX_R",
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
LCG_ANALYSIS_COLUMNS = [
|
| 31 |
+
"WBTS_name",
|
| 32 |
+
"lcg1_utilisation",
|
| 33 |
+
"avg_lcg1",
|
| 34 |
+
"max_lcg1",
|
| 35 |
+
"number_of_days_with_lcg1_exceeded",
|
| 36 |
+
"lcg1_comment",
|
| 37 |
+
"lcg2_utilisation",
|
| 38 |
+
"avg_lcg2",
|
| 39 |
+
"max_lcg2",
|
| 40 |
+
"number_of_days_with_lcg2_exceeded",
|
| 41 |
+
"lcg2_comment",
|
| 42 |
+
"difference_between_lcgs",
|
| 43 |
+
"difference_between_lcgs_comment",
|
| 44 |
+
"lcg_comment",
|
| 45 |
+
"number_of_lcg",
|
| 46 |
+
"final_comments",
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def lcg_kpi_analysis(
|
| 51 |
+
df,
|
| 52 |
+
num_last_days,
|
| 53 |
+
num_threshold_days,
|
| 54 |
+
lcg_utilization_threshold,
|
| 55 |
+
difference_between_lcgs,
|
| 56 |
+
) -> pd.DataFrame:
|
| 57 |
+
"""
|
| 58 |
+
Analyze LCG capacity data.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
df: DataFrame containing LCG capacity data
|
| 62 |
+
num_last_days: Number of days for analysis
|
| 63 |
+
num_threshold_days: Minimum days above threshold to flag for upgrade
|
| 64 |
+
lcg_utilization_threshold: Utilization threshold percentage for flagging
|
| 65 |
+
difference_between_lcgs: Difference between LCGs for flagging
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
Processed DataFrame with LCG capacity analysis results
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
lcg1_df = df[df["lcg_id"] == 1]
|
| 72 |
+
lcg2_df = df[df["lcg_id"] == 2]
|
| 73 |
+
|
| 74 |
+
pivoted_kpi_dfs = create_dfs_per_kpi(
|
| 75 |
+
df=df,
|
| 76 |
+
pivot_date_column="date",
|
| 77 |
+
pivot_name_column="WBTS_name",
|
| 78 |
+
kpi_columns_from=2,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
pivoted_lcg1_df = create_dfs_per_kpi(
|
| 82 |
+
df=lcg1_df,
|
| 83 |
+
pivot_date_column="date",
|
| 84 |
+
pivot_name_column="WBTS_name",
|
| 85 |
+
kpi_columns_from=2,
|
| 86 |
+
)
|
| 87 |
+
pivoted_lcg2_df = create_dfs_per_kpi(
|
| 88 |
+
df=lcg2_df,
|
| 89 |
+
pivot_date_column="date",
|
| 90 |
+
pivot_name_column="WBTS_name",
|
| 91 |
+
kpi_columns_from=2,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# BB_SU_LCG_MAX_R to have all site with LCG 1 and/ or LCG 2
|
| 95 |
+
BB_SU_LCG_MAX_R_df = pivoted_kpi_dfs["BB_SU_LCG_MAX_R"]
|
| 96 |
+
|
| 97 |
+
pivoted_lcg1_df = pivoted_lcg1_df["BB_SU_LCG_MAX_R"]
|
| 98 |
+
pivoted_lcg2_df = pivoted_lcg2_df["BB_SU_LCG_MAX_R"]
|
| 99 |
+
|
| 100 |
+
# rename column
|
| 101 |
+
pivoted_lcg1_df = pivoted_lcg1_df.rename(
|
| 102 |
+
columns={"BB_SU_LCG_MAX_R": "lcg1_utilisation"}
|
| 103 |
+
)
|
| 104 |
+
pivoted_lcg2_df = pivoted_lcg2_df.rename(
|
| 105 |
+
columns={"BB_SU_LCG_MAX_R": "lcg2_utilisation"}
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# analyze lcg utilization for each site per number_of_kpi_days and number_of_threshold_days
|
| 109 |
+
pivoted_lcg1_df = analyze_lcg_utilization(
|
| 110 |
+
df=pivoted_lcg1_df,
|
| 111 |
+
number_of_kpi_days=num_last_days,
|
| 112 |
+
number_of_threshold_days=num_threshold_days,
|
| 113 |
+
kpi_threshold=lcg_utilization_threshold,
|
| 114 |
+
kpi_column_name="lcg1",
|
| 115 |
+
)
|
| 116 |
+
pivoted_lcg2_df = analyze_lcg_utilization(
|
| 117 |
+
df=pivoted_lcg2_df,
|
| 118 |
+
number_of_kpi_days=num_last_days,
|
| 119 |
+
number_of_threshold_days=num_threshold_days,
|
| 120 |
+
kpi_threshold=lcg_utilization_threshold,
|
| 121 |
+
kpi_column_name="lcg2",
|
| 122 |
+
)
|
| 123 |
+
kpi_df = pd.concat(
|
| 124 |
+
[
|
| 125 |
+
BB_SU_LCG_MAX_R_df,
|
| 126 |
+
pivoted_lcg1_df,
|
| 127 |
+
pivoted_lcg2_df,
|
| 128 |
+
],
|
| 129 |
+
axis=1,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
kpi_df = kpi_df.reset_index()
|
| 133 |
+
|
| 134 |
+
# Number of available lcgs
|
| 135 |
+
# kpi_df = pd.merge(kpi_df, available_lcgs_df, on="WBTS_name", how="left")
|
| 136 |
+
|
| 137 |
+
# calculate difference between lcg1 and lcg2
|
| 138 |
+
kpi_df["difference_between_lcgs"] = kpi_df[["avg_lcg1", "avg_lcg2"]].apply(
|
| 139 |
+
lambda row: max(row) - min(row), axis=1
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# flag if difference between lcg1 and lcg2 is above threshold
|
| 143 |
+
kpi_df["difference_between_lcgs_comment"] = np.where(
|
| 144 |
+
kpi_df["difference_between_lcgs"] > difference_between_lcgs,
|
| 145 |
+
"difference between lcgs exceeded threshold",
|
| 146 |
+
None,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Combine comments
|
| 150 |
+
kpi_df = combine_comments(
|
| 151 |
+
kpi_df,
|
| 152 |
+
"lcg1_comment",
|
| 153 |
+
"lcg2_comment",
|
| 154 |
+
# "difference_between_lcgs_comment",
|
| 155 |
+
new_column="lcg_comment",
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
# Replace if "lcg_comment" contains "nan" and ", nan" and "nan, " with None
|
| 159 |
+
kpi_df["lcg_comment"] = kpi_df["lcg_comment"].replace("nan", None)
|
| 160 |
+
|
| 161 |
+
# Remove "nan" from comma-separated strings
|
| 162 |
+
kpi_df["lcg_comment"] = (
|
| 163 |
+
kpi_df["lcg_comment"].str.replace(r"\bnan\b,?\s?", "", regex=True).str.strip()
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
kpi_df["number_of_lcg"] = np.where(
|
| 167 |
+
kpi_df["avg_lcg1"].notna() & kpi_df["avg_lcg2"].notna(),
|
| 168 |
+
2,
|
| 169 |
+
np.where(kpi_df["avg_lcg1"].notna() | kpi_df["avg_lcg2"].notna(), 1, 0),
|
| 170 |
+
)
|
| 171 |
+
# Combine comments
|
| 172 |
+
kpi_df = combine_comments(
|
| 173 |
+
kpi_df,
|
| 174 |
+
"lcg_comment",
|
| 175 |
+
"number_of_lcg",
|
| 176 |
+
new_column="final_comments",
|
| 177 |
+
)
|
| 178 |
+
kpi_df["final_comments"] = kpi_df["final_comments"].apply(
|
| 179 |
+
lambda x: lcg_comments_mapping.get(x, x)
|
| 180 |
+
)
|
| 181 |
+
kpi_df = kpi_df[LCG_ANALYSIS_COLUMNS]
|
| 182 |
+
|
| 183 |
+
lcg_analysis_df = kpi_df.copy()
|
| 184 |
+
|
| 185 |
+
lcg_analysis_df = lcg_analysis_df[
|
| 186 |
+
[
|
| 187 |
+
"WBTS_name",
|
| 188 |
+
"avg_lcg1",
|
| 189 |
+
"max_lcg1",
|
| 190 |
+
"number_of_days_with_lcg1_exceeded",
|
| 191 |
+
"lcg1_comment",
|
| 192 |
+
"avg_lcg2",
|
| 193 |
+
"max_lcg2",
|
| 194 |
+
"number_of_days_with_lcg2_exceeded",
|
| 195 |
+
"lcg2_comment",
|
| 196 |
+
"difference_between_lcgs",
|
| 197 |
+
"final_comments",
|
| 198 |
+
]
|
| 199 |
+
]
|
| 200 |
+
|
| 201 |
+
lcg_analysis_df = lcg_analysis_df.droplevel(level=1, axis=1)
|
| 202 |
+
# Remove row if code less than 5 characters
|
| 203 |
+
lcg_analysis_df = lcg_analysis_df[lcg_analysis_df["WBTS_name"].str.len() >= 5]
|
| 204 |
+
|
| 205 |
+
# Add code
|
| 206 |
+
lcg_analysis_df["code"] = lcg_analysis_df["WBTS_name"].str.split("_").str[0]
|
| 207 |
+
|
| 208 |
+
lcg_analysis_df["code"] = (
|
| 209 |
+
pd.to_numeric(lcg_analysis_df["code"], errors="coerce").fillna(0).astype(int)
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
lcg_analysis_df["Region"] = (
|
| 213 |
+
lcg_analysis_df["WBTS_name"].str.split("_").str[1:2].str.join("_")
|
| 214 |
+
)
|
| 215 |
+
lcg_analysis_df["Region"] = lcg_analysis_df["Region"].fillna("UNKNOWN")
|
| 216 |
+
|
| 217 |
+
# move code to the first column
|
| 218 |
+
lcg_analysis_df = lcg_analysis_df[
|
| 219 |
+
["code", "Region"]
|
| 220 |
+
+ [col for col in lcg_analysis_df if col != "code" and col != "Region"]
|
| 221 |
+
]
|
| 222 |
+
|
| 223 |
+
# Load physical database
|
| 224 |
+
physical_db: pd.DataFrame = get_physical_db()
|
| 225 |
+
|
| 226 |
+
# Convert code_sector to code
|
| 227 |
+
physical_db["code"] = physical_db["Code_Sector"].str.split("_").str[0]
|
| 228 |
+
# remove duplicates
|
| 229 |
+
physical_db = physical_db.drop_duplicates(subset="code")
|
| 230 |
+
|
| 231 |
+
# keep only code and longitude and latitude
|
| 232 |
+
physical_db = physical_db[["code", "Longitude", "Latitude"]]
|
| 233 |
+
|
| 234 |
+
physical_db["code"] = (
|
| 235 |
+
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
lcg_analysis_df = pd.merge(
|
| 239 |
+
lcg_analysis_df,
|
| 240 |
+
physical_db,
|
| 241 |
+
on="code",
|
| 242 |
+
how="left",
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
return [lcg_analysis_df, kpi_df]
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def load_and_process_lcg_data(
|
| 249 |
+
uploaded_file,
|
| 250 |
+
num_last_days,
|
| 251 |
+
num_threshold_days,
|
| 252 |
+
lcg_utilization_threshold,
|
| 253 |
+
difference_between_lcgs,
|
| 254 |
+
) -> pd.DataFrame:
|
| 255 |
+
"""Load and process data for LCG capacity analysis."""
|
| 256 |
+
try:
|
| 257 |
+
# Load data
|
| 258 |
+
df = pd.read_csv(uploaded_file, delimiter=";")
|
| 259 |
+
if df.empty:
|
| 260 |
+
raise ValueError("Uploaded file is empty")
|
| 261 |
+
|
| 262 |
+
df = kpi_naming_cleaning(df)
|
| 263 |
+
df = create_daily_date(df)
|
| 264 |
+
|
| 265 |
+
# Validate required columns
|
| 266 |
+
missing_cols = [col for col in KPI_COLUMNS if col not in df.columns]
|
| 267 |
+
if missing_cols:
|
| 268 |
+
raise ValueError(f"Missing required columns: {', '.join(missing_cols)}")
|
| 269 |
+
|
| 270 |
+
df = df[KPI_COLUMNS]
|
| 271 |
+
|
| 272 |
+
# Process the data
|
| 273 |
+
dfs = lcg_kpi_analysis(
|
| 274 |
+
df,
|
| 275 |
+
num_last_days,
|
| 276 |
+
num_threshold_days,
|
| 277 |
+
lcg_utilization_threshold,
|
| 278 |
+
difference_between_lcgs,
|
| 279 |
+
)
|
| 280 |
+
return dfs
|
| 281 |
+
|
| 282 |
+
except Exception as e:
|
| 283 |
+
# Log the error and re-raise with a user-friendly message
|
| 284 |
+
error_msg = f"Error processing LCG data: {str(e)}"
|
| 285 |
+
st.error(error_msg)
|
| 286 |
+
raise
|
utils/kpi_analysis_utils.py
CHANGED
|
@@ -636,3 +636,31 @@ def analyze_fails_kpi(
|
|
| 636 |
None,
|
| 637 |
)
|
| 638 |
return result_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 636 |
None,
|
| 637 |
)
|
| 638 |
return result_df
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
def analyze_lcg_utilization(
|
| 642 |
+
df: pd.DataFrame,
|
| 643 |
+
number_of_kpi_days: int,
|
| 644 |
+
number_of_threshold_days: int,
|
| 645 |
+
kpi_threshold: int,
|
| 646 |
+
kpi_column_name: str,
|
| 647 |
+
) -> pd.DataFrame:
|
| 648 |
+
result_df: pd.DataFrame = df.copy()
|
| 649 |
+
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
|
| 650 |
+
# last_days_df = last_days_df.fillna(0)
|
| 651 |
+
|
| 652 |
+
result_df[f"avg_{kpi_column_name}"] = last_days_df.mean(axis=1).round(2)
|
| 653 |
+
result_df[f"max_{kpi_column_name}"] = last_days_df.max(axis=1)
|
| 654 |
+
# Count the number of days above threshold
|
| 655 |
+
result_df[f"number_of_days_with_{kpi_column_name}_exceeded"] = last_days_df.apply(
|
| 656 |
+
lambda row: sum(1 for x in row if x >= kpi_threshold), axis=1
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
# Add the {kpi_column_name}_comment : if number_of_days_with_{kpi_column_name}_exceeded_daily is >= number_of_threshold_days : {kpi_column_name} exceeded threshold , else : None
|
| 660 |
+
result_df[f"{kpi_column_name}_comment"] = np.where(
|
| 661 |
+
result_df[f"number_of_days_with_{kpi_column_name}_exceeded"]
|
| 662 |
+
>= number_of_threshold_days,
|
| 663 |
+
f"{kpi_column_name} exceeded threshold",
|
| 664 |
+
None,
|
| 665 |
+
)
|
| 666 |
+
return result_df
|