Adding global trafic analysis
Browse files- app.py +4 -0
- apps/kpi_analysis/trafic_analysis.py +399 -0
app.py
CHANGED
|
@@ -176,6 +176,10 @@ if check_password():
|
|
| 176 |
"apps/kpi_analysis/anomalie.py",
|
| 177 |
title=" 📊 KPIs Anomaly Detection",
|
| 178 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
],
|
| 180 |
"Documentations": [
|
| 181 |
st.Page(
|
|
|
|
| 176 |
"apps/kpi_analysis/anomalie.py",
|
| 177 |
title=" 📊 KPIs Anomaly Detection",
|
| 178 |
),
|
| 179 |
+
st.Page(
|
| 180 |
+
"apps/kpi_analysis/trafic_analysis.py",
|
| 181 |
+
title=" 📊 Trafic Analysis",
|
| 182 |
+
),
|
| 183 |
],
|
| 184 |
"Documentations": [
|
| 185 |
st.Page(
|
apps/kpi_analysis/trafic_analysis.py
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datetime import datetime
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
import streamlit as st
|
| 6 |
+
|
| 7 |
+
from utils.convert_to_excel import convert_dfs, save_dataframe
|
| 8 |
+
from utils.utils_vars import get_physical_db
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TraficAnalysis:
|
| 12 |
+
last_period_df: pd.DataFrame = None
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
############### PROCESSING ###############
|
| 16 |
+
def extract_code(name):
|
| 17 |
+
name = name.replace(" ", "_") if isinstance(name, str) else None
|
| 18 |
+
return int(name.split("_")[0]) if name and len(name) >= 10 else None
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def preprocess_2g(df: pd.DataFrame) -> pd.DataFrame:
|
| 22 |
+
df = df[df["BCF name"].str.len() >= 10].copy()
|
| 23 |
+
df["2g_data_trafic"] = df["TRAFFIC_PS DL"] + df["PS_UL_Load"]
|
| 24 |
+
df.rename(columns={"2G_Carried Traffic": "2g_voice_trafic"}, inplace=True)
|
| 25 |
+
df["code"] = df["BCF name"].apply(extract_code)
|
| 26 |
+
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y")
|
| 27 |
+
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
|
| 28 |
+
df = df.groupby(["date", "ID", "code"], as_index=False)[
|
| 29 |
+
["2g_data_trafic", "2g_voice_trafic"]
|
| 30 |
+
].sum()
|
| 31 |
+
return df
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def preprocess_3g(df: pd.DataFrame) -> pd.DataFrame:
|
| 35 |
+
df = df[df["WBTS name"].str.len() >= 10].copy()
|
| 36 |
+
df["code"] = df["WBTS name"].apply(extract_code)
|
| 37 |
+
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y")
|
| 38 |
+
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
|
| 39 |
+
df.rename(
|
| 40 |
+
columns={
|
| 41 |
+
"Total CS traffic - Erl": "3g_voice_trafic",
|
| 42 |
+
"Total_Data_Traffic": "3g_data_trafic",
|
| 43 |
+
},
|
| 44 |
+
inplace=True,
|
| 45 |
+
)
|
| 46 |
+
df = df.groupby(["date", "ID", "code"], as_index=False)[
|
| 47 |
+
["3g_voice_trafic", "3g_data_trafic"]
|
| 48 |
+
].sum()
|
| 49 |
+
return df
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def preprocess_lte(df: pd.DataFrame) -> pd.DataFrame:
|
| 53 |
+
df = df[df["LNBTS name"].str.len() >= 10].copy()
|
| 54 |
+
df["lte_data_trafic"] = (
|
| 55 |
+
df["4G/LTE DL Traffic Volume (GBytes)"]
|
| 56 |
+
+ df["4G/LTE UL Traffic Volume (GBytes)"]
|
| 57 |
+
)
|
| 58 |
+
df["code"] = df["LNBTS name"].apply(extract_code)
|
| 59 |
+
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y")
|
| 60 |
+
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
|
| 61 |
+
df = df.groupby(["date", "ID", "code"], as_index=False)[["lte_data_trafic"]].sum()
|
| 62 |
+
return df
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
############################## ANALYSIS ################
|
| 66 |
+
def merge_and_compare(df_2g, df_3g, df_lte, pre_range, post_range, last_period_range):
|
| 67 |
+
|
| 68 |
+
# Load physical database
|
| 69 |
+
physical_db = get_physical_db()
|
| 70 |
+
physical_db["code"] = physical_db["Code_Sector"].str.split("_").str[0]
|
| 71 |
+
physical_db["code"] = (
|
| 72 |
+
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
|
| 73 |
+
)
|
| 74 |
+
physical_db = physical_db[["code", "Longitude", "Latitude", "City"]]
|
| 75 |
+
physical_db = physical_db.drop_duplicates(subset="code")
|
| 76 |
+
|
| 77 |
+
df = pd.merge(df_2g, df_3g, on=["date", "ID", "code"], how="outer")
|
| 78 |
+
df = pd.merge(df, df_lte, on=["date", "ID", "code"], how="outer")
|
| 79 |
+
# print(df)
|
| 80 |
+
|
| 81 |
+
for col in [
|
| 82 |
+
"2g_data_trafic",
|
| 83 |
+
"2g_voice_trafic",
|
| 84 |
+
"3g_voice_trafic",
|
| 85 |
+
"3g_data_trafic",
|
| 86 |
+
"lte_data_trafic",
|
| 87 |
+
]:
|
| 88 |
+
if col not in df:
|
| 89 |
+
df[col] = 0
|
| 90 |
+
|
| 91 |
+
df.fillna(0, inplace=True)
|
| 92 |
+
|
| 93 |
+
df["total_voice_trafic"] = df["2g_voice_trafic"] + df["3g_voice_trafic"]
|
| 94 |
+
df["total_data_trafic"] = (
|
| 95 |
+
df["2g_data_trafic"] + df["3g_data_trafic"] + df["lte_data_trafic"]
|
| 96 |
+
)
|
| 97 |
+
df = pd.merge(df, physical_db, on=["code"], how="left")
|
| 98 |
+
|
| 99 |
+
# Assign period based on date range
|
| 100 |
+
pre_start, pre_end = pd.to_datetime(pre_range[0]), pd.to_datetime(pre_range[1])
|
| 101 |
+
post_start, post_end = pd.to_datetime(post_range[0]), pd.to_datetime(post_range[1])
|
| 102 |
+
last_period_start, last_period_end = pd.to_datetime(
|
| 103 |
+
last_period_range[0]
|
| 104 |
+
), pd.to_datetime(last_period_range[1])
|
| 105 |
+
|
| 106 |
+
last_period = df[
|
| 107 |
+
(df["date"] >= last_period_start) & (df["date"] <= last_period_end)
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
def assign_period(date):
|
| 111 |
+
if pre_start <= date <= pre_end:
|
| 112 |
+
return "pre"
|
| 113 |
+
elif post_start <= date <= post_end:
|
| 114 |
+
return "post"
|
| 115 |
+
else:
|
| 116 |
+
return "other"
|
| 117 |
+
|
| 118 |
+
df["period"] = df["date"].apply(assign_period)
|
| 119 |
+
|
| 120 |
+
comparison = df[df["period"].isin(["pre", "post"])]
|
| 121 |
+
|
| 122 |
+
pivot = (
|
| 123 |
+
comparison.groupby(["code", "period"])[
|
| 124 |
+
["total_voice_trafic", "total_data_trafic"]
|
| 125 |
+
]
|
| 126 |
+
.sum()
|
| 127 |
+
.unstack()
|
| 128 |
+
)
|
| 129 |
+
pivot.columns = [f"{metric}_{period}" for metric, period in pivot.columns]
|
| 130 |
+
pivot = pivot.reset_index()
|
| 131 |
+
|
| 132 |
+
# Differences
|
| 133 |
+
pivot["total_voice_trafic_diff"] = (
|
| 134 |
+
pivot["total_voice_trafic_post"] - pivot["total_voice_trafic_pre"]
|
| 135 |
+
)
|
| 136 |
+
pivot["total_data_trafic_diff"] = (
|
| 137 |
+
pivot["total_data_trafic_post"] - pivot["total_data_trafic_pre"]
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
for metric in ["total_voice_trafic", "total_data_trafic"]:
|
| 141 |
+
pivot[f"{metric}_diff_pct"] = (
|
| 142 |
+
(pivot.get(f"{metric}_post", 0) - pivot.get(f"{metric}_pre", 0))
|
| 143 |
+
/ pivot.get(f"{metric}_pre", 1)
|
| 144 |
+
) * 100
|
| 145 |
+
return df, last_period, pivot.round(2)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
############################## UI #########################
|
| 149 |
+
st.title("📊 Global Trafic Analysis - 2G / 3G / LTE")
|
| 150 |
+
doc_col, image_col = st.columns(2)
|
| 151 |
+
|
| 152 |
+
with doc_col:
|
| 153 |
+
st.write(
|
| 154 |
+
"""
|
| 155 |
+
The report analyzes 2G / 3G / LTE traffic :
|
| 156 |
+
- 2G Traffic Report in CSV format (required columns : BCF name, PERIOD_START_TIME, TRAFFIC_PS DL, PS_UL_Load)
|
| 157 |
+
- 3G Traffic Report in CSV format (required columns : WBTS name, PERIOD_START_TIME, Total CS traffic - Erl, Total_Data_Traffic)
|
| 158 |
+
- LTE Traffic Report in CSV format (required columns : LNBTS name, PERIOD_START_TIME, 4G/LTE DL Traffic Volume (GBytes), 4G/LTE UL Traffic Volume (GBytes))
|
| 159 |
+
"""
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# with image_col:
|
| 163 |
+
# st.image("./assets/trafic_analysis.png", width=250)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
upload_2g_col, upload_3g_col, upload_lte_col = st.columns(3)
|
| 167 |
+
with upload_2g_col:
|
| 168 |
+
two_g_file = st.file_uploader(
|
| 169 |
+
"Upload 2G Traffic Report", type=["csv", "xls", "xlsx"]
|
| 170 |
+
)
|
| 171 |
+
with upload_3g_col:
|
| 172 |
+
three_g_file = st.file_uploader(
|
| 173 |
+
"Upload 3G Traffic Report", type=["csv", "xls", "xlsx"]
|
| 174 |
+
)
|
| 175 |
+
with upload_lte_col:
|
| 176 |
+
lte_file = st.file_uploader(
|
| 177 |
+
"Upload LTE Traffic Report", type=["csv", "xls", "xlsx"]
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
pre_range_col, post_range_col = st.columns(2)
|
| 181 |
+
with pre_range_col:
|
| 182 |
+
pre_range = st.date_input("Pre-period (from - to)", [])
|
| 183 |
+
with post_range_col:
|
| 184 |
+
post_range = st.date_input("Post-period (from - to)", [])
|
| 185 |
+
|
| 186 |
+
last_period_range_col, number_of_top_trafic_sites_col = st.columns(2)
|
| 187 |
+
with last_period_range_col:
|
| 188 |
+
last_period_range = st.date_input("Last period (from - to)", [])
|
| 189 |
+
with number_of_top_trafic_sites_col:
|
| 190 |
+
number_of_top_trafic_sites = st.number_input(
|
| 191 |
+
"Number of top traffic sites", value=25
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
if len(pre_range) != 2 or len(post_range) != 2:
|
| 195 |
+
st.warning("⚠️ Please select 2 dates for each period (pre and post).")
|
| 196 |
+
st.stop()
|
| 197 |
+
if not all([two_g_file, three_g_file, lte_file]):
|
| 198 |
+
st.info("Please upload all 3 reports and select the comparison periods.")
|
| 199 |
+
st.stop()
|
| 200 |
+
|
| 201 |
+
if st.button("🔍 Run Analysis"):
|
| 202 |
+
|
| 203 |
+
df_2g = pd.read_csv(two_g_file, delimiter=";")
|
| 204 |
+
df_3g = pd.read_csv(three_g_file, delimiter=";")
|
| 205 |
+
df_lte = pd.read_csv(lte_file, delimiter=";")
|
| 206 |
+
|
| 207 |
+
df_2g_clean = preprocess_2g(df_2g)
|
| 208 |
+
df_3g_clean = preprocess_3g(df_3g)
|
| 209 |
+
df_lte_clean = preprocess_lte(df_lte)
|
| 210 |
+
|
| 211 |
+
full_df, last_period, summary_df = merge_and_compare(
|
| 212 |
+
df_2g_clean, df_3g_clean, df_lte_clean, pre_range, post_range, last_period_range
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# 🔍 Display Summary
|
| 216 |
+
st.success("✅ Analysis completed")
|
| 217 |
+
st.subheader("📈 Summary Analysis Pre / Post")
|
| 218 |
+
st.dataframe(summary_df)
|
| 219 |
+
TraficAnalysis.last_period_df = last_period
|
| 220 |
+
|
| 221 |
+
#######################################################################################################""
|
| 222 |
+
|
| 223 |
+
#######################################################################################################
|
| 224 |
+
if TraficAnalysis.last_period_df is not None:
|
| 225 |
+
|
| 226 |
+
df = TraficAnalysis.last_period_df
|
| 227 |
+
# Get top trafics sites based on total data trafic during last period
|
| 228 |
+
top_sites = (
|
| 229 |
+
df.groupby(["code", "City"])["total_data_trafic"]
|
| 230 |
+
.sum()
|
| 231 |
+
.sort_values(ascending=False)
|
| 232 |
+
)
|
| 233 |
+
top_sites = top_sites.head(number_of_top_trafic_sites)
|
| 234 |
+
|
| 235 |
+
st.subheader(f"Top {number_of_top_trafic_sites} sites by data traffic")
|
| 236 |
+
chart_col, data_col = st.columns(2)
|
| 237 |
+
with data_col:
|
| 238 |
+
st.dataframe(top_sites.sort_values(ascending=True))
|
| 239 |
+
# chart
|
| 240 |
+
fig = px.bar(
|
| 241 |
+
top_sites.reset_index(),
|
| 242 |
+
y=top_sites.reset_index()[["City", "code"]].agg(
|
| 243 |
+
lambda x: "_".join(map(str, x)), axis=1
|
| 244 |
+
),
|
| 245 |
+
x="total_data_trafic",
|
| 246 |
+
title=f"Top {number_of_top_trafic_sites} sites by data traffic",
|
| 247 |
+
orientation="h",
|
| 248 |
+
text="total_data_trafic",
|
| 249 |
+
text_auto=True,
|
| 250 |
+
)
|
| 251 |
+
# fig.update_layout(height=600)
|
| 252 |
+
with chart_col:
|
| 253 |
+
st.plotly_chart(fig)
|
| 254 |
+
|
| 255 |
+
# Top sites by voice trafic during last period
|
| 256 |
+
top_sites_voice = (
|
| 257 |
+
df.groupby(["code", "City"])["total_voice_trafic"]
|
| 258 |
+
.sum()
|
| 259 |
+
.sort_values(ascending=False)
|
| 260 |
+
)
|
| 261 |
+
top_sites_voice = top_sites_voice.head(number_of_top_trafic_sites)
|
| 262 |
+
|
| 263 |
+
st.subheader(f"Top {number_of_top_trafic_sites} sites by voice traffic")
|
| 264 |
+
chart_col, data_col = st.columns(2)
|
| 265 |
+
with data_col:
|
| 266 |
+
st.dataframe(top_sites_voice.sort_values(ascending=True))
|
| 267 |
+
# chart
|
| 268 |
+
fig = px.bar(
|
| 269 |
+
top_sites_voice.reset_index(),
|
| 270 |
+
y=top_sites_voice.reset_index()[["City", "code"]].agg(
|
| 271 |
+
lambda x: "_".join(map(str, x)), axis=1
|
| 272 |
+
),
|
| 273 |
+
x="total_voice_trafic",
|
| 274 |
+
title=f"Top {number_of_top_trafic_sites} sites by voice traffic",
|
| 275 |
+
orientation="h",
|
| 276 |
+
text="total_voice_trafic",
|
| 277 |
+
text_auto=True,
|
| 278 |
+
)
|
| 279 |
+
# fig.update_layout(height=600)
|
| 280 |
+
with chart_col:
|
| 281 |
+
st.plotly_chart(fig)
|
| 282 |
+
|
| 283 |
+
#####################################################
|
| 284 |
+
min_size = 5
|
| 285 |
+
max_size = 40
|
| 286 |
+
# Map of sum of data trafic during last period
|
| 287 |
+
# Aggregate total data traffic
|
| 288 |
+
df_data = (
|
| 289 |
+
df.groupby(["code", "City", "Latitude", "Longitude"])["total_data_trafic"]
|
| 290 |
+
.sum()
|
| 291 |
+
.reset_index()
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
st.subheader("Map of data trafic during last period")
|
| 295 |
+
|
| 296 |
+
# Define size range
|
| 297 |
+
|
| 298 |
+
# Linear size scaling
|
| 299 |
+
traffic_data_min = df_data["total_data_trafic"].min()
|
| 300 |
+
traffic_data_max = df_data["total_data_trafic"].max()
|
| 301 |
+
df_data["bubble_size"] = df_data["total_data_trafic"].apply(
|
| 302 |
+
lambda x: min_size
|
| 303 |
+
+ (max_size - min_size)
|
| 304 |
+
* (x - traffic_data_min)
|
| 305 |
+
/ (traffic_data_max - traffic_data_min)
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# Custom blue color scale: start from visible blue
|
| 309 |
+
custom_blue_red = [
|
| 310 |
+
[0.0, "#4292c6"], # light blue
|
| 311 |
+
[0.2, "#2171b5"],
|
| 312 |
+
[0.4, "#084594"], # dark blue
|
| 313 |
+
[0.6, "#cb181d"], # Strong red
|
| 314 |
+
[0.8, "#a50f15"], # Darker red
|
| 315 |
+
[1.0, "#67000d"], # Very dark red
|
| 316 |
+
]
|
| 317 |
+
|
| 318 |
+
fig = px.scatter_map(
|
| 319 |
+
df_data,
|
| 320 |
+
lat="Latitude",
|
| 321 |
+
lon="Longitude",
|
| 322 |
+
color="total_data_trafic",
|
| 323 |
+
size="bubble_size",
|
| 324 |
+
color_continuous_scale=custom_blue_red,
|
| 325 |
+
size_max=max_size,
|
| 326 |
+
zoom=10,
|
| 327 |
+
height=600,
|
| 328 |
+
title="Data traffic distribution",
|
| 329 |
+
hover_data={"code": True, "total_data_trafic": True},
|
| 330 |
+
hover_name="code",
|
| 331 |
+
text=[str(x) for x in df_data["code"]],
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
fig.update_layout(
|
| 335 |
+
mapbox_style="open-street-map",
|
| 336 |
+
coloraxis_colorbar=dict(title="Total Data Traffic (MB)"),
|
| 337 |
+
coloraxis=dict(cmin=traffic_data_min, cmax=traffic_data_max),
|
| 338 |
+
font=dict(size=10, color="black"),
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
st.plotly_chart(fig)
|
| 342 |
+
|
| 343 |
+
########################################################################################
|
| 344 |
+
# Map of sum of voice trafic during last period
|
| 345 |
+
# Aggregate total voice traffic
|
| 346 |
+
df_voice = (
|
| 347 |
+
df.groupby(["code", "City", "Latitude", "Longitude"])["total_voice_trafic"]
|
| 348 |
+
.sum()
|
| 349 |
+
.reset_index()
|
| 350 |
+
)
|
| 351 |
+
st.subheader("Map of voice trafic during last period")
|
| 352 |
+
|
| 353 |
+
# Linear size scaling
|
| 354 |
+
traffic_voice_min = df_voice["total_voice_trafic"].min()
|
| 355 |
+
traffic_voice_max = df_voice["total_voice_trafic"].max()
|
| 356 |
+
df_voice["bubble_size"] = df_voice["total_voice_trafic"].apply(
|
| 357 |
+
lambda x: min_size
|
| 358 |
+
+ (max_size - min_size)
|
| 359 |
+
* (x - traffic_voice_min)
|
| 360 |
+
/ (traffic_voice_max - traffic_voice_min)
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
fig = px.scatter_map(
|
| 364 |
+
df_voice,
|
| 365 |
+
lat="Latitude",
|
| 366 |
+
lon="Longitude",
|
| 367 |
+
color="total_voice_trafic",
|
| 368 |
+
size="bubble_size",
|
| 369 |
+
color_continuous_scale=custom_blue_red,
|
| 370 |
+
size_max=max_size,
|
| 371 |
+
zoom=10,
|
| 372 |
+
height=600,
|
| 373 |
+
title="Voice traffic distribution",
|
| 374 |
+
hover_data={"code": True, "total_voice_trafic": True},
|
| 375 |
+
hover_name="code",
|
| 376 |
+
text=[str(x) for x in df_voice["code"]],
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
fig.update_layout(
|
| 380 |
+
mapbox_style="open-street-map",
|
| 381 |
+
coloraxis_colorbar=dict(title="Total Voice Traffic (MB)"),
|
| 382 |
+
coloraxis=dict(cmin=traffic_voice_min, cmax=traffic_voice_max),
|
| 383 |
+
font=dict(size=10, color="black"),
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
st.plotly_chart(fig)
|
| 387 |
+
|
| 388 |
+
final_dfs = convert_dfs(
|
| 389 |
+
[full_df, summary_df], ["Global_Trafic_Analysis", "Pre_Post_analysis"]
|
| 390 |
+
)
|
| 391 |
+
# 📥 Bouton de téléchargement
|
| 392 |
+
st.download_button(
|
| 393 |
+
on_click="ignore",
|
| 394 |
+
type="primary",
|
| 395 |
+
label="Download the Analysis Report",
|
| 396 |
+
data=final_dfs,
|
| 397 |
+
file_name=f"Global_Trafic_Analysis_Report_{datetime.now()}.xlsx",
|
| 398 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 399 |
+
)
|