Adding comments to 2G kpi analysis part1
Browse files
apps/kpi_analysis/gsm_capacity.py
CHANGED
|
@@ -15,9 +15,9 @@ with doc_col:
|
|
| 15 |
st.write(
|
| 16 |
"""
|
| 17 |
The report should be run with a minimum of 3 days of data.
|
| 18 |
-
-
|
| 19 |
-
-
|
| 20 |
-
-
|
| 21 |
"""
|
| 22 |
)
|
| 23 |
|
|
@@ -73,7 +73,7 @@ if (
|
|
| 73 |
"TCH ABIS Fails Threshold", min_value=0, value=10
|
| 74 |
)
|
| 75 |
with threshold_col3:
|
| 76 |
-
|
| 77 |
"SDDCH Blocking Threshold", min_value=0.1, value=0.5
|
| 78 |
)
|
| 79 |
with threshold_col4:
|
|
@@ -90,15 +90,17 @@ if (
|
|
| 90 |
number_of_threshold_days=number_of_threshold_days,
|
| 91 |
availability_threshold=availability_threshold,
|
| 92 |
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 93 |
-
|
| 94 |
tch_blocking_threshold=tch_blocking_threshold,
|
| 95 |
)
|
| 96 |
|
| 97 |
if dfs is not None:
|
| 98 |
gsm_analysis_df = dfs[0]
|
| 99 |
bh_kpi_df = dfs[1]
|
|
|
|
| 100 |
GsmCapacity.final_results = convert_gsm_dfs(
|
| 101 |
-
[gsm_analysis_df, bh_kpi_df
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
# GsmCapacity.final_results = convert_gsm_dfs(
|
|
@@ -115,4 +117,4 @@ if (
|
|
| 115 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 116 |
)
|
| 117 |
|
| 118 |
-
st.write(
|
|
|
|
| 15 |
st.write(
|
| 16 |
"""
|
| 17 |
The report should be run with a minimum of 3 days of data.
|
| 18 |
+
- Dump file required
|
| 19 |
+
- Daily Cell level KPI report in CSV format
|
| 20 |
+
- BH Cell level KPI report in CSV format
|
| 21 |
"""
|
| 22 |
)
|
| 23 |
|
|
|
|
| 73 |
"TCH ABIS Fails Threshold", min_value=0, value=10
|
| 74 |
)
|
| 75 |
with threshold_col3:
|
| 76 |
+
sdcch_blocking_threshold = st.number_input(
|
| 77 |
"SDDCH Blocking Threshold", min_value=0.1, value=0.5
|
| 78 |
)
|
| 79 |
with threshold_col4:
|
|
|
|
| 90 |
number_of_threshold_days=number_of_threshold_days,
|
| 91 |
availability_threshold=availability_threshold,
|
| 92 |
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 93 |
+
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 94 |
tch_blocking_threshold=tch_blocking_threshold,
|
| 95 |
)
|
| 96 |
|
| 97 |
if dfs is not None:
|
| 98 |
gsm_analysis_df = dfs[0]
|
| 99 |
bh_kpi_df = dfs[1]
|
| 100 |
+
daily_kpi_df = dfs[2]
|
| 101 |
GsmCapacity.final_results = convert_gsm_dfs(
|
| 102 |
+
[gsm_analysis_df, bh_kpi_df, daily_kpi_df],
|
| 103 |
+
["GSM_Analysis", "BH_KPI_Analysis", "Daily_KPI_Analysis"],
|
| 104 |
)
|
| 105 |
|
| 106 |
# GsmCapacity.final_results = convert_gsm_dfs(
|
|
|
|
| 117 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 118 |
)
|
| 119 |
|
| 120 |
+
st.write(daily_kpi_df)
|
process_kpi/process_gsm_capacity.py
CHANGED
|
@@ -6,6 +6,8 @@ from utils.check_sheet_exist import execute_checks_sheets_exist
|
|
| 6 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
| 7 |
from utils.kpi_analysis_utils import (
|
| 8 |
GsmAnalysis,
|
|
|
|
|
|
|
| 9 |
create_daily_date,
|
| 10 |
create_dfs_per_kpi,
|
| 11 |
create_hourly_date,
|
|
@@ -66,39 +68,89 @@ KPI_COLUMNS = [
|
|
| 66 |
BH_COLUMNS_FOR_CAPACITY = [
|
| 67 |
"Max_Traffic BH",
|
| 68 |
"Avg_Traffic BH",
|
| 69 |
-
"
|
| 70 |
-
"
|
| 71 |
-
"
|
| 72 |
-
"
|
| 73 |
-
"
|
| 74 |
-
"
|
| 75 |
]
|
| 76 |
|
| 77 |
|
| 78 |
-
def
|
| 79 |
df: pd.DataFrame,
|
| 80 |
number_of_kpi_days: int,
|
| 81 |
-
|
| 82 |
number_of_threshold_days: int,
|
|
|
|
| 83 |
) -> pd.DataFrame:
|
| 84 |
|
| 85 |
result_df = df.copy()
|
| 86 |
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
| 87 |
# last_days_df = last_days_df.fillna(0)
|
| 88 |
|
| 89 |
-
result_df["
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
# Count the number of days above threshold
|
| 92 |
-
result_df["
|
| 93 |
-
|
|
|
|
|
|
|
| 94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
return result_df
|
| 96 |
|
| 97 |
|
| 98 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
df: pd.DataFrame,
|
| 100 |
number_of_kpi_days: int,
|
| 101 |
sdcch_blocking_threshold: int,
|
|
|
|
| 102 |
number_of_threshold_days: int,
|
| 103 |
) -> pd.DataFrame:
|
| 104 |
|
|
@@ -106,12 +158,29 @@ def bh_sdcch_call_blocking_analysis(
|
|
| 106 |
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
| 107 |
# last_days_df = last_days_df.fillna(0)
|
| 108 |
|
| 109 |
-
result_df["
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
# Count the number of days above threshold
|
| 112 |
-
result_df[
|
|
|
|
|
|
|
| 113 |
lambda row: sum(1 for x in row if x >= sdcch_blocking_threshold), axis=1
|
| 114 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
return result_df
|
| 116 |
|
| 117 |
|
|
@@ -164,18 +233,20 @@ def bh_dfs_per_kpi(
|
|
| 164 |
|
| 165 |
# ANALISYS
|
| 166 |
|
| 167 |
-
tch_call_blocking_df =
|
| 168 |
df=tch_call_blocking_df,
|
| 169 |
number_of_kpi_days=number_of_kpi_days,
|
| 170 |
-
tch_blocking_threshold=tch_blocking_threshold,
|
| 171 |
number_of_threshold_days=number_of_threshold_days,
|
|
|
|
|
|
|
| 172 |
)
|
| 173 |
|
| 174 |
-
sdcch_real_blocking_df =
|
| 175 |
df=sdcch_real_blocking_df,
|
| 176 |
number_of_kpi_days=number_of_kpi_days,
|
| 177 |
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 178 |
number_of_threshold_days=number_of_threshold_days,
|
|
|
|
| 179 |
)
|
| 180 |
|
| 181 |
Carried_Traffic_df = bh_traffic_analysis(
|
|
@@ -183,9 +254,6 @@ def bh_dfs_per_kpi(
|
|
| 183 |
number_of_kpi_days=number_of_kpi_days,
|
| 184 |
)
|
| 185 |
|
| 186 |
-
# Carried_Traffic_df["Max_Traffic BH"] = Carried_Traffic_df.max(axis=1)
|
| 187 |
-
# Carried_Traffic_df["Avg_Traffic BH"] = Carried_Traffic_df.mean(axis=1)
|
| 188 |
-
|
| 189 |
bh_kpi_df = pd.concat(
|
| 190 |
[
|
| 191 |
tch_availability_ratio_df,
|
|
@@ -195,8 +263,6 @@ def bh_dfs_per_kpi(
|
|
| 195 |
],
|
| 196 |
axis=1,
|
| 197 |
)
|
| 198 |
-
# print(Carried_Traffic_df)
|
| 199 |
-
|
| 200 |
return bh_kpi_df
|
| 201 |
|
| 202 |
|
|
@@ -216,7 +282,6 @@ def analyse_bh_data(
|
|
| 216 |
number_of_kpi_days=number_of_kpi_days,
|
| 217 |
tch_blocking_threshold=tch_blocking_threshold,
|
| 218 |
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 219 |
-
number_of_threshold_days=number_of_threshold_days,
|
| 220 |
)
|
| 221 |
|
| 222 |
bh_df_for_capacity = df.copy()
|
|
@@ -243,6 +308,8 @@ def daily_dfs_per_kpi(
|
|
| 243 |
availability_threshold: int = 95,
|
| 244 |
number_of_threshold_days: int = 3,
|
| 245 |
tch_abis_fails_threshold: int = 10,
|
|
|
|
|
|
|
| 246 |
) -> pd.DataFrame:
|
| 247 |
"""
|
| 248 |
Create pivoted DataFrames for each KPI and perform analysis.
|
|
@@ -271,6 +338,61 @@ def daily_dfs_per_kpi(
|
|
| 271 |
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
|
| 272 |
tch_abis_fails_df: pd.DataFrame = pivoted_kpi_dfs["TCH_ABIS_FAIL_CALL_c001084"]
|
| 273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
def analyse_daily_data(
|
| 276 |
daily_report_path: str,
|
|
@@ -278,6 +400,8 @@ def analyse_daily_data(
|
|
| 278 |
tch_abis_fails_threshold: int,
|
| 279 |
availability_threshold: int,
|
| 280 |
number_of_threshold_days: int,
|
|
|
|
|
|
|
| 281 |
) -> pd.DataFrame:
|
| 282 |
df = pd.read_csv(daily_report_path, delimiter=";")
|
| 283 |
df = kpi_naming_cleaning(df)
|
|
@@ -289,8 +413,10 @@ def analyse_daily_data(
|
|
| 289 |
availability_threshold=availability_threshold,
|
| 290 |
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 291 |
number_of_threshold_days=number_of_threshold_days,
|
|
|
|
|
|
|
| 292 |
)
|
| 293 |
-
|
| 294 |
|
| 295 |
|
| 296 |
def get_gsm_databases(dump_path: str) -> pd.DataFrame:
|
|
@@ -340,19 +466,18 @@ def analyze_gsm_data(
|
|
| 340 |
number_of_threshold_days: int,
|
| 341 |
availability_threshold: int,
|
| 342 |
tch_abis_fails_threshold: int,
|
| 343 |
-
|
| 344 |
tch_blocking_threshold: float,
|
| 345 |
):
|
| 346 |
-
# print("Analyzing data...")
|
| 347 |
-
# print(f"Number of days: {number_of_kpi_days}")
|
| 348 |
-
# print(f"availability_threshold: {availability_threshold}")
|
| 349 |
|
| 350 |
-
analyse_daily_data(
|
| 351 |
daily_report_path=daily_report_path,
|
| 352 |
number_of_kpi_days=number_of_kpi_days,
|
| 353 |
availability_threshold=availability_threshold,
|
| 354 |
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 355 |
number_of_threshold_days=number_of_threshold_days,
|
|
|
|
|
|
|
| 356 |
)
|
| 357 |
|
| 358 |
gsm_database_df: pd.DataFrame = get_gsm_databases(dump_path)
|
|
@@ -361,7 +486,7 @@ def analyze_gsm_data(
|
|
| 361 |
bh_report_path=bh_report_path,
|
| 362 |
number_of_kpi_days=number_of_kpi_days,
|
| 363 |
tch_blocking_threshold=tch_blocking_threshold,
|
| 364 |
-
sdcch_blocking_threshold=
|
| 365 |
number_of_threshold_days=number_of_threshold_days,
|
| 366 |
)
|
| 367 |
|
|
@@ -377,7 +502,7 @@ def analyze_gsm_data(
|
|
| 377 |
|
| 378 |
# Add "ERLANGB value" =MAX TRAFFIC/(1-(MAX TCH call blocking/200))
|
| 379 |
gsm_analysis_df["ErlabngB_value"] = gsm_analysis_df["Max_Traffic BH"] / (
|
| 380 |
-
1 - (gsm_analysis_df["
|
| 381 |
)
|
| 382 |
|
| 383 |
# - Get "Target FR CHs" by mapping "ERLANG value" to 2G analysis_utility "erlangB" dict
|
|
@@ -405,4 +530,4 @@ def analyze_gsm_data(
|
|
| 405 |
gsm_analysis_df["Target TRXs"] - gsm_analysis_df["number_trx_per_cell"]
|
| 406 |
)
|
| 407 |
|
| 408 |
-
return [gsm_analysis_df, bh_kpi_full_df]
|
|
|
|
| 6 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
| 7 |
from utils.kpi_analysis_utils import (
|
| 8 |
GsmAnalysis,
|
| 9 |
+
cell_availability_analysis,
|
| 10 |
+
combine_comments,
|
| 11 |
create_daily_date,
|
| 12 |
create_dfs_per_kpi,
|
| 13 |
create_hourly_date,
|
|
|
|
| 68 |
BH_COLUMNS_FOR_CAPACITY = [
|
| 69 |
"Max_Traffic BH",
|
| 70 |
"Avg_Traffic BH",
|
| 71 |
+
"max_tch_call_blocking_bh",
|
| 72 |
+
"avg_tch_call_blocking_bh",
|
| 73 |
+
"number_of_days_with_tch_blocking_exceeded_bh",
|
| 74 |
+
"max_sdcch_real_blocking_bh",
|
| 75 |
+
"avg_sdcch_real_blocking_bh",
|
| 76 |
+
"number_of_days_with_sdcch_blocking_exceeded_bh",
|
| 77 |
]
|
| 78 |
|
| 79 |
|
| 80 |
+
def analyze_tch_abis_fails(
|
| 81 |
df: pd.DataFrame,
|
| 82 |
number_of_kpi_days: int,
|
| 83 |
+
analysis_type: str,
|
| 84 |
number_of_threshold_days: int,
|
| 85 |
+
tch_abis_fails_threshold: int,
|
| 86 |
) -> pd.DataFrame:
|
| 87 |
|
| 88 |
result_df = df.copy()
|
| 89 |
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
| 90 |
# last_days_df = last_days_df.fillna(0)
|
| 91 |
|
| 92 |
+
result_df[f"avg_tch_abis_fail_{analysis_type.lower()}"] = last_days_df.mean(
|
| 93 |
+
axis=1
|
| 94 |
+
).round(2)
|
| 95 |
+
result_df[f"max_tch_abis_fail_{analysis_type.lower()}"] = last_days_df.max(axis=1)
|
| 96 |
# Count the number of days above threshold
|
| 97 |
+
result_df[f"number_of_days_with_tch_abis_fail_exceeded_{analysis_type.lower()}"] = (
|
| 98 |
+
last_days_df.apply(
|
| 99 |
+
lambda row: sum(1 for x in row if x >= tch_abis_fails_threshold), axis=1
|
| 100 |
+
)
|
| 101 |
)
|
| 102 |
+
|
| 103 |
+
# Add the daily_tch_comment : if number_of_days_with_tch_abis_fail_exceeded_daily is >= number_of_threshold_days : tch abis fail exceeded treshold , else : None
|
| 104 |
+
result_df[f"tch_abis_fail_{analysis_type.lower()}_comment"] = np.where(
|
| 105 |
+
result_df[f"number_of_days_with_tch_abis_fail_exceeded_{analysis_type.lower()}"]
|
| 106 |
+
>= number_of_threshold_days,
|
| 107 |
+
"tch abis fail exceeded treshold",
|
| 108 |
+
None,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
return result_df
|
| 112 |
|
| 113 |
|
| 114 |
+
def analyze_tch_call_blocking(
|
| 115 |
+
df: pd.DataFrame,
|
| 116 |
+
number_of_kpi_days: int,
|
| 117 |
+
analysis_type: str,
|
| 118 |
+
number_of_threshold_days: int,
|
| 119 |
+
tch_blocking_threshold: int,
|
| 120 |
+
) -> pd.DataFrame:
|
| 121 |
+
|
| 122 |
+
result_df = df.copy()
|
| 123 |
+
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
| 124 |
+
# last_days_df = last_days_df.fillna(0)
|
| 125 |
+
|
| 126 |
+
result_df[f"avg_tch_call_blocking_{analysis_type.lower()}"] = last_days_df.mean(
|
| 127 |
+
axis=1
|
| 128 |
+
).round(2)
|
| 129 |
+
result_df[f"max_tch_call_blocking_{analysis_type.lower()}"] = last_days_df.max(
|
| 130 |
+
axis=1
|
| 131 |
+
)
|
| 132 |
+
# Count the number of days above threshold
|
| 133 |
+
result_df[f"number_of_days_with_tch_blocking_exceeded_{analysis_type.lower()}"] = (
|
| 134 |
+
last_days_df.apply(
|
| 135 |
+
lambda row: sum(1 for x in row if x >= tch_blocking_threshold), axis=1
|
| 136 |
+
)
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Add the daily_tch_comment : if number_of_days_with_tch_blocking_exceeded_daily is >= number_of_threshold_days : tch blocking exceeded treshold , else : None
|
| 140 |
+
result_df[f"tch_call_blocking_{analysis_type.lower()}_comment"] = np.where(
|
| 141 |
+
result_df[f"number_of_days_with_tch_blocking_exceeded_{analysis_type.lower()}"]
|
| 142 |
+
>= number_of_threshold_days,
|
| 143 |
+
"TCH blocking exceeded threshold",
|
| 144 |
+
None,
|
| 145 |
+
)
|
| 146 |
+
return result_df
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def analyze_sdcch_call_blocking(
|
| 150 |
df: pd.DataFrame,
|
| 151 |
number_of_kpi_days: int,
|
| 152 |
sdcch_blocking_threshold: int,
|
| 153 |
+
analysis_type: str,
|
| 154 |
number_of_threshold_days: int,
|
| 155 |
) -> pd.DataFrame:
|
| 156 |
|
|
|
|
| 158 |
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
| 159 |
# last_days_df = last_days_df.fillna(0)
|
| 160 |
|
| 161 |
+
result_df[f"avg_sdcch_real_blocking_{analysis_type.lower()}"] = last_days_df.mean(
|
| 162 |
+
axis=1
|
| 163 |
+
).round(2)
|
| 164 |
+
result_df[f"max_sdcch_real_blocking_{analysis_type.lower()}"] = last_days_df.max(
|
| 165 |
+
axis=1
|
| 166 |
+
)
|
| 167 |
# Count the number of days above threshold
|
| 168 |
+
result_df[
|
| 169 |
+
f"number_of_days_with_sdcch_blocking_exceeded_{analysis_type.lower()}"
|
| 170 |
+
] = last_days_df.apply(
|
| 171 |
lambda row: sum(1 for x in row if x >= sdcch_blocking_threshold), axis=1
|
| 172 |
)
|
| 173 |
+
|
| 174 |
+
# add daily_sdcch_comment : if number_of_days_with_sdcch_blocking_exceeded_daily is >= number_of_threshold_days : sdcch blocking exceeded treshold , else : None
|
| 175 |
+
result_df[f"sdcch_real_blocking_{analysis_type.lower()}_comment"] = np.where(
|
| 176 |
+
result_df[
|
| 177 |
+
f"number_of_days_with_sdcch_blocking_exceeded_{analysis_type.lower()}"
|
| 178 |
+
]
|
| 179 |
+
>= number_of_threshold_days,
|
| 180 |
+
"SDCCH blocking exceeded threshold",
|
| 181 |
+
None,
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
return result_df
|
| 185 |
|
| 186 |
|
|
|
|
| 233 |
|
| 234 |
# ANALISYS
|
| 235 |
|
| 236 |
+
tch_call_blocking_df = analyze_tch_call_blocking(
|
| 237 |
df=tch_call_blocking_df,
|
| 238 |
number_of_kpi_days=number_of_kpi_days,
|
|
|
|
| 239 |
number_of_threshold_days=number_of_threshold_days,
|
| 240 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
| 241 |
+
analysis_type="BH",
|
| 242 |
)
|
| 243 |
|
| 244 |
+
sdcch_real_blocking_df = analyze_sdcch_call_blocking(
|
| 245 |
df=sdcch_real_blocking_df,
|
| 246 |
number_of_kpi_days=number_of_kpi_days,
|
| 247 |
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 248 |
number_of_threshold_days=number_of_threshold_days,
|
| 249 |
+
analysis_type="BH",
|
| 250 |
)
|
| 251 |
|
| 252 |
Carried_Traffic_df = bh_traffic_analysis(
|
|
|
|
| 254 |
number_of_kpi_days=number_of_kpi_days,
|
| 255 |
)
|
| 256 |
|
|
|
|
|
|
|
|
|
|
| 257 |
bh_kpi_df = pd.concat(
|
| 258 |
[
|
| 259 |
tch_availability_ratio_df,
|
|
|
|
| 263 |
],
|
| 264 |
axis=1,
|
| 265 |
)
|
|
|
|
|
|
|
| 266 |
return bh_kpi_df
|
| 267 |
|
| 268 |
|
|
|
|
| 282 |
number_of_kpi_days=number_of_kpi_days,
|
| 283 |
tch_blocking_threshold=tch_blocking_threshold,
|
| 284 |
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
|
|
|
| 285 |
)
|
| 286 |
|
| 287 |
bh_df_for_capacity = df.copy()
|
|
|
|
| 308 |
availability_threshold: int = 95,
|
| 309 |
number_of_threshold_days: int = 3,
|
| 310 |
tch_abis_fails_threshold: int = 10,
|
| 311 |
+
sdcch_blocking_threshold: int = 0.5,
|
| 312 |
+
tch_blocking_threshold: int = 0.5,
|
| 313 |
) -> pd.DataFrame:
|
| 314 |
"""
|
| 315 |
Create pivoted DataFrames for each KPI and perform analysis.
|
|
|
|
| 338 |
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
|
| 339 |
tch_abis_fails_df: pd.DataFrame = pivoted_kpi_dfs["TCH_ABIS_FAIL_CALL_c001084"]
|
| 340 |
|
| 341 |
+
tch_availability_ratio_df = cell_availability_analysis(
|
| 342 |
+
df=tch_availability_ratio_df,
|
| 343 |
+
days=number_of_kpi_days,
|
| 344 |
+
availability_threshold=availability_threshold,
|
| 345 |
+
)
|
| 346 |
+
sdcch_real_blocking_df = analyze_sdcch_call_blocking(
|
| 347 |
+
df=sdcch_real_blocking_df,
|
| 348 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 349 |
+
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 350 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 351 |
+
analysis_type="Daily",
|
| 352 |
+
)
|
| 353 |
+
tch_call_blocking_df = analyze_tch_call_blocking(
|
| 354 |
+
df=tch_call_blocking_df,
|
| 355 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 356 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 357 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
| 358 |
+
analysis_type="Daily",
|
| 359 |
+
)
|
| 360 |
+
tch_abis_fails_df = analyze_tch_abis_fails(
|
| 361 |
+
df=tch_abis_fails_df,
|
| 362 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 363 |
+
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 364 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 365 |
+
analysis_type="Daily",
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
daily_kpi_df = pd.concat(
|
| 369 |
+
[
|
| 370 |
+
tch_availability_ratio_df,
|
| 371 |
+
Carried_Traffic_df,
|
| 372 |
+
tch_call_blocking_df,
|
| 373 |
+
sdcch_real_blocking_df,
|
| 374 |
+
tch_abis_fails_df,
|
| 375 |
+
],
|
| 376 |
+
axis=1,
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
daily_kpi_df = combine_comments(
|
| 380 |
+
daily_kpi_df,
|
| 381 |
+
"availability_comment",
|
| 382 |
+
"tch_abis_fail_daily_comment",
|
| 383 |
+
"sdcch_real_blocking_daily_comment",
|
| 384 |
+
new_column="sdcch_comments",
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
daily_kpi_df = combine_comments(
|
| 388 |
+
daily_kpi_df,
|
| 389 |
+
"availability_comment",
|
| 390 |
+
"tch_abis_fail_daily_comment",
|
| 391 |
+
"tch_call_blocking_daily_comment",
|
| 392 |
+
new_column="tch_comments",
|
| 393 |
+
)
|
| 394 |
+
return daily_kpi_df
|
| 395 |
+
|
| 396 |
|
| 397 |
def analyse_daily_data(
|
| 398 |
daily_report_path: str,
|
|
|
|
| 400 |
tch_abis_fails_threshold: int,
|
| 401 |
availability_threshold: int,
|
| 402 |
number_of_threshold_days: int,
|
| 403 |
+
sdcch_blocking_threshold: int,
|
| 404 |
+
tch_blocking_threshold: int,
|
| 405 |
) -> pd.DataFrame:
|
| 406 |
df = pd.read_csv(daily_report_path, delimiter=";")
|
| 407 |
df = kpi_naming_cleaning(df)
|
|
|
|
| 413 |
availability_threshold=availability_threshold,
|
| 414 |
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 415 |
number_of_threshold_days=number_of_threshold_days,
|
| 416 |
+
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 417 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
| 418 |
)
|
| 419 |
+
return df
|
| 420 |
|
| 421 |
|
| 422 |
def get_gsm_databases(dump_path: str) -> pd.DataFrame:
|
|
|
|
| 466 |
number_of_threshold_days: int,
|
| 467 |
availability_threshold: int,
|
| 468 |
tch_abis_fails_threshold: int,
|
| 469 |
+
sdcch_blocking_threshold: float,
|
| 470 |
tch_blocking_threshold: float,
|
| 471 |
):
|
|
|
|
|
|
|
|
|
|
| 472 |
|
| 473 |
+
daily_kpi_df: pd.DataFrame = analyse_daily_data(
|
| 474 |
daily_report_path=daily_report_path,
|
| 475 |
number_of_kpi_days=number_of_kpi_days,
|
| 476 |
availability_threshold=availability_threshold,
|
| 477 |
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 478 |
number_of_threshold_days=number_of_threshold_days,
|
| 479 |
+
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 480 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
| 481 |
)
|
| 482 |
|
| 483 |
gsm_database_df: pd.DataFrame = get_gsm_databases(dump_path)
|
|
|
|
| 486 |
bh_report_path=bh_report_path,
|
| 487 |
number_of_kpi_days=number_of_kpi_days,
|
| 488 |
tch_blocking_threshold=tch_blocking_threshold,
|
| 489 |
+
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 490 |
number_of_threshold_days=number_of_threshold_days,
|
| 491 |
)
|
| 492 |
|
|
|
|
| 502 |
|
| 503 |
# Add "ERLANGB value" =MAX TRAFFIC/(1-(MAX TCH call blocking/200))
|
| 504 |
gsm_analysis_df["ErlabngB_value"] = gsm_analysis_df["Max_Traffic BH"] / (
|
| 505 |
+
1 - (gsm_analysis_df["max_tch_call_blocking_bh"] / 200)
|
| 506 |
)
|
| 507 |
|
| 508 |
# - Get "Target FR CHs" by mapping "ERLANG value" to 2G analysis_utility "erlangB" dict
|
|
|
|
| 530 |
gsm_analysis_df["Target TRXs"] - gsm_analysis_df["number_trx_per_cell"]
|
| 531 |
)
|
| 532 |
|
| 533 |
+
return [gsm_analysis_df, bh_kpi_full_df, daily_kpi_df]
|
process_kpi/process_wbts_capacity.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
|
| 3 |
from utils.kpi_analysis_utils import (
|
|
|
|
|
|
|
| 4 |
create_daily_date,
|
| 5 |
create_dfs_per_kpi,
|
| 6 |
kpi_naming_cleaning,
|
|
@@ -78,39 +80,6 @@ def max_used_bb_subunits_analysis(
|
|
| 78 |
return result_df
|
| 79 |
|
| 80 |
|
| 81 |
-
def cell_availability_analysis(df: pd.DataFrame, days: int = 7) -> pd.DataFrame:
|
| 82 |
-
"""
|
| 83 |
-
Analyze cell availability and categorize sites based on availability metrics.
|
| 84 |
-
|
| 85 |
-
Args:
|
| 86 |
-
df: DataFrame containing cell availability data
|
| 87 |
-
days: Number of days to analyze
|
| 88 |
-
|
| 89 |
-
Returns:
|
| 90 |
-
DataFrame with availability analysis and site status comments
|
| 91 |
-
"""
|
| 92 |
-
result_df = df.copy().fillna(0)
|
| 93 |
-
last_days_df = result_df.iloc[:, -days:]
|
| 94 |
-
result_df["Average_cell_availability"] = last_days_df.mean(axis=1).round(2)
|
| 95 |
-
|
| 96 |
-
# Categorize sites based on availability
|
| 97 |
-
def categorize_availability(x: float) -> str:
|
| 98 |
-
if x == 0 or pd.isnull(x):
|
| 99 |
-
return "Down Site"
|
| 100 |
-
elif 0 < x <= 70:
|
| 101 |
-
return "critical instability"
|
| 102 |
-
elif 70 < x <= 95:
|
| 103 |
-
return "instability"
|
| 104 |
-
else:
|
| 105 |
-
return "Site Ok"
|
| 106 |
-
|
| 107 |
-
result_df["availability_comment"] = result_df["Average_cell_availability"].apply(
|
| 108 |
-
categorize_availability
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
return result_df
|
| 112 |
-
|
| 113 |
-
|
| 114 |
def max_used_ce_analysis(
|
| 115 |
df: pd.DataFrame,
|
| 116 |
days: int = 7,
|
|
@@ -190,33 +159,6 @@ def avail_ce_analysis(df: pd.DataFrame, days: int = 7) -> pd.DataFrame:
|
|
| 190 |
return result_df
|
| 191 |
|
| 192 |
|
| 193 |
-
def combine_comments(df: pd.DataFrame, *columns: str, new_column: str) -> pd.DataFrame:
|
| 194 |
-
"""
|
| 195 |
-
Combine comments from multiple columns into one column.
|
| 196 |
-
|
| 197 |
-
Args:
|
| 198 |
-
df: DataFrame containing comment columns
|
| 199 |
-
*columns: Variable number of column names containing comments
|
| 200 |
-
new_column: Name for the new combined comments column
|
| 201 |
-
|
| 202 |
-
Returns:
|
| 203 |
-
DataFrame with a new column containing combined comments
|
| 204 |
-
"""
|
| 205 |
-
result_df = df.copy()
|
| 206 |
-
result_df[new_column] = result_df[list(columns)].apply(
|
| 207 |
-
lambda row: ", ".join([x for x in row if x]), axis=1
|
| 208 |
-
)
|
| 209 |
-
# Trim all trailing commas
|
| 210 |
-
result_df[new_column] = result_df[new_column].str.replace(
|
| 211 |
-
r"^[,\s]+|[,\s]+$", "", regex=True
|
| 212 |
-
)
|
| 213 |
-
# Replace multiple commas with a single comma
|
| 214 |
-
result_df[new_column] = result_df[new_column].str.replace(
|
| 215 |
-
r",\s*,", ", ", regex=True
|
| 216 |
-
)
|
| 217 |
-
return result_df
|
| 218 |
-
|
| 219 |
-
|
| 220 |
def bb_comments_analysis(df: pd.DataFrame) -> pd.DataFrame:
|
| 221 |
"""
|
| 222 |
Combine baseband related comments into a single column.
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
|
| 3 |
from utils.kpi_analysis_utils import (
|
| 4 |
+
cell_availability_analysis,
|
| 5 |
+
combine_comments,
|
| 6 |
create_daily_date,
|
| 7 |
create_dfs_per_kpi,
|
| 8 |
kpi_naming_cleaning,
|
|
|
|
| 80 |
return result_df
|
| 81 |
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
def max_used_ce_analysis(
|
| 84 |
df: pd.DataFrame,
|
| 85 |
days: int = 7,
|
|
|
|
| 159 |
return result_df
|
| 160 |
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
def bb_comments_analysis(df: pd.DataFrame) -> pd.DataFrame:
|
| 163 |
"""
|
| 164 |
Combine baseband related comments into a single column.
|
utils/kpi_analysis_utils.py
CHANGED
|
@@ -216,6 +216,33 @@ class GsmAnalysis:
|
|
| 216 |
}
|
| 217 |
|
| 218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
def kpi_naming_cleaning(df: pd.DataFrame) -> pd.DataFrame:
|
| 220 |
"""
|
| 221 |
Clean KPI column names by replacing special characters and standardizing format.
|
|
@@ -295,7 +322,7 @@ def create_dfs_per_kpi(
|
|
| 295 |
DataFrame with combined analysis results
|
| 296 |
"""
|
| 297 |
kpi_columns = df.columns[kpi_columns_from:]
|
| 298 |
-
|
| 299 |
pivoted_kpi_dfs = {}
|
| 300 |
|
| 301 |
# Loop through each KPI and create pivoted DataFrames
|
|
@@ -310,7 +337,6 @@ def create_dfs_per_kpi(
|
|
| 310 |
pivot_df = temp_df.pivot(
|
| 311 |
index=pivot_name_column, columns=pivot_date_column, values=kpi
|
| 312 |
)
|
| 313 |
-
# print(pivot_df)
|
| 314 |
pivot_df.columns = pd.MultiIndex.from_product([[kpi], pivot_df.columns])
|
| 315 |
pivot_df.columns.names = ["KPI", "Date"]
|
| 316 |
|
|
@@ -318,3 +344,43 @@ def create_dfs_per_kpi(
|
|
| 318 |
pivoted_kpi_dfs[kpi] = pivot_df
|
| 319 |
|
| 320 |
return pivoted_kpi_dfs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
}
|
| 217 |
|
| 218 |
|
| 219 |
+
def combine_comments(df: pd.DataFrame, *columns: str, new_column: str) -> pd.DataFrame:
|
| 220 |
+
"""
|
| 221 |
+
Combine comments from multiple columns into one column.
|
| 222 |
+
|
| 223 |
+
Args:
|
| 224 |
+
df: DataFrame containing comment columns
|
| 225 |
+
*columns: Variable number of column names containing comments
|
| 226 |
+
new_column: Name for the new combined comments column
|
| 227 |
+
|
| 228 |
+
Returns:
|
| 229 |
+
DataFrame with a new column containing combined comments
|
| 230 |
+
"""
|
| 231 |
+
result_df = df.copy()
|
| 232 |
+
result_df[new_column] = result_df[list(columns)].apply(
|
| 233 |
+
lambda row: ", ".join([x for x in row if x]), axis=1
|
| 234 |
+
)
|
| 235 |
+
# Trim all trailing commas
|
| 236 |
+
result_df[new_column] = result_df[new_column].str.replace(
|
| 237 |
+
r"^[,\s]+|[,\s]+$", "", regex=True
|
| 238 |
+
)
|
| 239 |
+
# Replace multiple commas with a single comma
|
| 240 |
+
result_df[new_column] = result_df[new_column].str.replace(
|
| 241 |
+
r",\s*,", ", ", regex=True
|
| 242 |
+
)
|
| 243 |
+
return result_df
|
| 244 |
+
|
| 245 |
+
|
| 246 |
def kpi_naming_cleaning(df: pd.DataFrame) -> pd.DataFrame:
|
| 247 |
"""
|
| 248 |
Clean KPI column names by replacing special characters and standardizing format.
|
|
|
|
| 322 |
DataFrame with combined analysis results
|
| 323 |
"""
|
| 324 |
kpi_columns = df.columns[kpi_columns_from:]
|
| 325 |
+
|
| 326 |
pivoted_kpi_dfs = {}
|
| 327 |
|
| 328 |
# Loop through each KPI and create pivoted DataFrames
|
|
|
|
| 337 |
pivot_df = temp_df.pivot(
|
| 338 |
index=pivot_name_column, columns=pivot_date_column, values=kpi
|
| 339 |
)
|
|
|
|
| 340 |
pivot_df.columns = pd.MultiIndex.from_product([[kpi], pivot_df.columns])
|
| 341 |
pivot_df.columns.names = ["KPI", "Date"]
|
| 342 |
|
|
|
|
| 344 |
pivoted_kpi_dfs[kpi] = pivot_df
|
| 345 |
|
| 346 |
return pivoted_kpi_dfs
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def cell_availability_analysis(
|
| 350 |
+
df: pd.DataFrame, days: int = 7, availability_threshold: int = 95
|
| 351 |
+
) -> pd.DataFrame:
|
| 352 |
+
"""
|
| 353 |
+
Analyze cell availability and categorize sites based on availability metrics.
|
| 354 |
+
|
| 355 |
+
Args:
|
| 356 |
+
df: DataFrame containing cell availability data
|
| 357 |
+
days: Number of days to analyze
|
| 358 |
+
|
| 359 |
+
Returns:
|
| 360 |
+
DataFrame with availability analysis and site status comments
|
| 361 |
+
"""
|
| 362 |
+
result_df = df.copy().fillna(0)
|
| 363 |
+
last_days_df = result_df.iloc[:, -days:]
|
| 364 |
+
result_df["Average_cell_availability"] = last_days_df.mean(axis=1).round(2)
|
| 365 |
+
|
| 366 |
+
# Count the number of days above threshold
|
| 367 |
+
result_df["number_of_days_exceeding_threshold"] = last_days_df.apply(
|
| 368 |
+
lambda row: sum(1 for x in row if x <= availability_threshold), axis=1
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
# Categorize sites based on availability
|
| 372 |
+
def categorize_availability(x: float) -> str:
|
| 373 |
+
if x == 0 or pd.isnull(x):
|
| 374 |
+
return "Down Site"
|
| 375 |
+
elif 0 < x <= 70:
|
| 376 |
+
return "critical instability"
|
| 377 |
+
elif 70 < x <= availability_threshold:
|
| 378 |
+
return "instability"
|
| 379 |
+
else:
|
| 380 |
+
return "Availability OK"
|
| 381 |
+
|
| 382 |
+
result_df["availability_comment"] = result_df["Average_cell_availability"].apply(
|
| 383 |
+
categorize_availability
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
return result_df
|