add avail and Abis checking BH
Browse files
apps/kpi_analysis/gsm_capacity.py
CHANGED
|
@@ -135,7 +135,7 @@ if (
|
|
| 135 |
gsm_analysis_df.groupby("Final comment").size().reset_index(name="count")
|
| 136 |
)
|
| 137 |
fig = px.bar(final_comments_df, x="Final comment", y="count")
|
| 138 |
-
fig.update_layout(height=
|
| 139 |
fig.update_traces(texttemplate="%{value}", textposition="outside")
|
| 140 |
st.plotly_chart(fig, use_container_width=True)
|
| 141 |
st.write(final_comments_df)
|
|
@@ -147,7 +147,7 @@ if (
|
|
| 147 |
.reset_index(name="count")
|
| 148 |
)
|
| 149 |
fig = px.bar(bh_congestion_status_df, x="BH Congestion status", y="count")
|
| 150 |
-
fig.update_layout(height=
|
| 151 |
fig.update_traces(texttemplate="%{value}", textposition="outside")
|
| 152 |
st.plotly_chart(fig, use_container_width=True)
|
| 153 |
st.write(bh_congestion_status_df)
|
|
@@ -158,7 +158,7 @@ if (
|
|
| 158 |
.reset_index(name="count")
|
| 159 |
)
|
| 160 |
fig = px.bar(operational_comments_df, x="operational_comment", y="count")
|
| 161 |
-
fig.update_layout(height=
|
| 162 |
fig.update_traces(texttemplate="%{value}", textposition="outside")
|
| 163 |
st.plotly_chart(fig, use_container_width=True)
|
| 164 |
st.write(operational_comments_df)
|
|
|
|
| 135 |
gsm_analysis_df.groupby("Final comment").size().reset_index(name="count")
|
| 136 |
)
|
| 137 |
fig = px.bar(final_comments_df, x="Final comment", y="count")
|
| 138 |
+
fig.update_layout(height=1000)
|
| 139 |
fig.update_traces(texttemplate="%{value}", textposition="outside")
|
| 140 |
st.plotly_chart(fig, use_container_width=True)
|
| 141 |
st.write(final_comments_df)
|
|
|
|
| 147 |
.reset_index(name="count")
|
| 148 |
)
|
| 149 |
fig = px.bar(bh_congestion_status_df, x="BH Congestion status", y="count")
|
| 150 |
+
fig.update_layout(height=800)
|
| 151 |
fig.update_traces(texttemplate="%{value}", textposition="outside")
|
| 152 |
st.plotly_chart(fig, use_container_width=True)
|
| 153 |
st.write(bh_congestion_status_df)
|
|
|
|
| 158 |
.reset_index(name="count")
|
| 159 |
)
|
| 160 |
fig = px.bar(operational_comments_df, x="operational_comment", y="count")
|
| 161 |
+
fig.update_layout(height=600)
|
| 162 |
fig.update_traces(texttemplate="%{value}", textposition="outside")
|
| 163 |
st.plotly_chart(fig, use_container_width=True)
|
| 164 |
st.write(operational_comments_df)
|
process_kpi/process_gsm_capacity.py
CHANGED
|
@@ -74,19 +74,26 @@ BH_COLUMNS_FOR_CAPACITY = [
|
|
| 74 |
"max_tch_call_blocking_bh",
|
| 75 |
"avg_tch_call_blocking_bh",
|
| 76 |
"number_of_days_with_tch_blocking_exceeded_bh",
|
|
|
|
| 77 |
"max_sdcch_real_blocking_bh",
|
| 78 |
"avg_sdcch_real_blocking_bh",
|
| 79 |
"number_of_days_with_sdcch_blocking_exceeded_bh",
|
| 80 |
-
"tch_call_blocking_bh_comment",
|
| 81 |
"sdcch_real_blocking_bh_comment",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
]
|
| 83 |
|
| 84 |
DAILY_COLUMNS_FOR_CAPACITY = [
|
| 85 |
-
"
|
| 86 |
-
"
|
| 87 |
-
"
|
| 88 |
-
"avg_tch_abis_fail_daily",
|
| 89 |
"max_tch_abis_fail_daily",
|
|
|
|
| 90 |
"number_of_days_with_tch_abis_fail_exceeded_daily",
|
| 91 |
"tch_abis_fail_daily_comment",
|
| 92 |
]
|
|
@@ -112,6 +119,8 @@ def bh_dfs_per_kpi(
|
|
| 112 |
tch_blocking_threshold: int = 0.50,
|
| 113 |
sdcch_blocking_threshold: int = 0.50,
|
| 114 |
number_of_threshold_days: int = 3,
|
|
|
|
|
|
|
| 115 |
) -> pd.DataFrame:
|
| 116 |
"""
|
| 117 |
Create pivoted DataFrames for each KPI and perform analysis.
|
|
@@ -138,6 +147,7 @@ def bh_dfs_per_kpi(
|
|
| 138 |
sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
|
| 139 |
Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
|
| 140 |
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
|
|
|
|
| 141 |
|
| 142 |
# ANALISYS
|
| 143 |
|
|
@@ -162,12 +172,27 @@ def bh_dfs_per_kpi(
|
|
| 162 |
number_of_kpi_days=number_of_kpi_days,
|
| 163 |
)
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
bh_kpi_df = pd.concat(
|
| 166 |
[
|
| 167 |
-
tch_availability_ratio_df,
|
| 168 |
Carried_Traffic_df,
|
| 169 |
tch_call_blocking_df,
|
| 170 |
sdcch_real_blocking_df,
|
|
|
|
|
|
|
| 171 |
],
|
| 172 |
axis=1,
|
| 173 |
)
|
|
@@ -180,6 +205,8 @@ def analyse_bh_data(
|
|
| 180 |
tch_blocking_threshold: int,
|
| 181 |
sdcch_blocking_threshold: int,
|
| 182 |
number_of_threshold_days: int,
|
|
|
|
|
|
|
| 183 |
) -> pd.DataFrame:
|
| 184 |
df = pd.read_csv(bh_report_path, delimiter=";")
|
| 185 |
df = kpi_naming_cleaning(df)
|
|
@@ -191,6 +218,8 @@ def analyse_bh_data(
|
|
| 191 |
tch_blocking_threshold=tch_blocking_threshold,
|
| 192 |
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 193 |
number_of_threshold_days=number_of_threshold_days,
|
|
|
|
|
|
|
| 194 |
)
|
| 195 |
|
| 196 |
bh_df_for_capacity = df.copy()
|
|
@@ -287,7 +316,7 @@ def daily_dfs_per_kpi(
|
|
| 287 |
|
| 288 |
daily_kpi_df = combine_comments(
|
| 289 |
daily_kpi_df,
|
| 290 |
-
"
|
| 291 |
"tch_abis_fail_daily_comment",
|
| 292 |
"sdcch_real_blocking_daily_comment",
|
| 293 |
new_column="sdcch_comments",
|
|
@@ -295,7 +324,7 @@ def daily_dfs_per_kpi(
|
|
| 295 |
|
| 296 |
daily_kpi_df = combine_comments(
|
| 297 |
daily_kpi_df,
|
| 298 |
-
"
|
| 299 |
"tch_abis_fail_daily_comment",
|
| 300 |
"tch_call_blocking_daily_comment",
|
| 301 |
new_column="tch_comments",
|
|
@@ -410,6 +439,8 @@ def analyze_gsm_data(
|
|
| 410 |
tch_blocking_threshold=tch_blocking_threshold,
|
| 411 |
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 412 |
number_of_threshold_days=number_of_threshold_days,
|
|
|
|
|
|
|
| 413 |
)
|
| 414 |
|
| 415 |
bh_kpi_df = bh_kpi_dfs[0]
|
|
@@ -471,22 +502,22 @@ def analyze_gsm_data(
|
|
| 471 |
gsm_analysis_df["Target TRXs"] - gsm_analysis_df["number_trx_per_cell"]
|
| 472 |
)
|
| 473 |
|
| 474 |
-
# if "
|
| 475 |
-
# if "
|
| 476 |
-
# if "
|
| 477 |
-
# if "
|
| 478 |
# Else "Operational is OK"
|
| 479 |
gsm_analysis_df["operational_comment"] = np.select(
|
| 480 |
[
|
| 481 |
-
gsm_analysis_df["
|
| 482 |
-
(gsm_analysis_df["
|
| 483 |
& (
|
| 484 |
gsm_analysis_df["tch_abis_fail_daily_comment"]
|
| 485 |
== "tch abis fail exceeded threshold"
|
| 486 |
), # 2
|
| 487 |
-
(gsm_analysis_df["
|
| 488 |
& pd.isna(gsm_analysis_df["tch_abis_fail_daily_comment"]), # 3
|
| 489 |
-
(gsm_analysis_df["
|
| 490 |
& (
|
| 491 |
gsm_analysis_df["tch_abis_fail_daily_comment"]
|
| 492 |
== "tch abis fail exceeded threshold"
|
|
|
|
| 74 |
"max_tch_call_blocking_bh",
|
| 75 |
"avg_tch_call_blocking_bh",
|
| 76 |
"number_of_days_with_tch_blocking_exceeded_bh",
|
| 77 |
+
"tch_call_blocking_bh_comment",
|
| 78 |
"max_sdcch_real_blocking_bh",
|
| 79 |
"avg_sdcch_real_blocking_bh",
|
| 80 |
"number_of_days_with_sdcch_blocking_exceeded_bh",
|
|
|
|
| 81 |
"sdcch_real_blocking_bh_comment",
|
| 82 |
+
"Average_cell_availability_bh",
|
| 83 |
+
"number_of_days_exceeding_availability_threshold_bh",
|
| 84 |
+
"availability_comment_bh",
|
| 85 |
+
"max_tch_abis_fail_bh",
|
| 86 |
+
"avg_tch_abis_fail_bh",
|
| 87 |
+
"number_of_days_with_tch_abis_fail_exceeded_bh",
|
| 88 |
+
"tch_abis_fail_bh_comment",
|
| 89 |
]
|
| 90 |
|
| 91 |
DAILY_COLUMNS_FOR_CAPACITY = [
|
| 92 |
+
"Average_cell_availability_daily",
|
| 93 |
+
"number_of_days_exceeding_availability_threshold_daily",
|
| 94 |
+
"availability_comment_daily",
|
|
|
|
| 95 |
"max_tch_abis_fail_daily",
|
| 96 |
+
"avg_tch_abis_fail_daily",
|
| 97 |
"number_of_days_with_tch_abis_fail_exceeded_daily",
|
| 98 |
"tch_abis_fail_daily_comment",
|
| 99 |
]
|
|
|
|
| 119 |
tch_blocking_threshold: int = 0.50,
|
| 120 |
sdcch_blocking_threshold: int = 0.50,
|
| 121 |
number_of_threshold_days: int = 3,
|
| 122 |
+
tch_abis_fails_threshold: int = 10,
|
| 123 |
+
availability_threshold: int = 95,
|
| 124 |
) -> pd.DataFrame:
|
| 125 |
"""
|
| 126 |
Create pivoted DataFrames for each KPI and perform analysis.
|
|
|
|
| 147 |
sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
|
| 148 |
Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
|
| 149 |
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
|
| 150 |
+
tch_abis_fails_df: pd.DataFrame = pivoted_kpi_dfs["TCH_ABIS_FAIL_CALL_c001084"]
|
| 151 |
|
| 152 |
# ANALISYS
|
| 153 |
|
|
|
|
| 172 |
number_of_kpi_days=number_of_kpi_days,
|
| 173 |
)
|
| 174 |
|
| 175 |
+
tch_abis_fails_df = analyze_tch_abis_fails(
|
| 176 |
+
df=tch_abis_fails_df,
|
| 177 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 178 |
+
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 179 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 180 |
+
analysis_type="BH",
|
| 181 |
+
)
|
| 182 |
+
tch_availability_ratio_df = cell_availability_analysis(
|
| 183 |
+
df=tch_availability_ratio_df,
|
| 184 |
+
days=number_of_kpi_days,
|
| 185 |
+
availability_threshold=availability_threshold,
|
| 186 |
+
analysis_type="BH",
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
bh_kpi_df = pd.concat(
|
| 190 |
[
|
|
|
|
| 191 |
Carried_Traffic_df,
|
| 192 |
tch_call_blocking_df,
|
| 193 |
sdcch_real_blocking_df,
|
| 194 |
+
tch_availability_ratio_df,
|
| 195 |
+
tch_abis_fails_df,
|
| 196 |
],
|
| 197 |
axis=1,
|
| 198 |
)
|
|
|
|
| 205 |
tch_blocking_threshold: int,
|
| 206 |
sdcch_blocking_threshold: int,
|
| 207 |
number_of_threshold_days: int,
|
| 208 |
+
tch_abis_fails_threshold: int,
|
| 209 |
+
availability_threshold: int,
|
| 210 |
) -> pd.DataFrame:
|
| 211 |
df = pd.read_csv(bh_report_path, delimiter=";")
|
| 212 |
df = kpi_naming_cleaning(df)
|
|
|
|
| 218 |
tch_blocking_threshold=tch_blocking_threshold,
|
| 219 |
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 220 |
number_of_threshold_days=number_of_threshold_days,
|
| 221 |
+
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 222 |
+
availability_threshold=availability_threshold,
|
| 223 |
)
|
| 224 |
|
| 225 |
bh_df_for_capacity = df.copy()
|
|
|
|
| 316 |
|
| 317 |
daily_kpi_df = combine_comments(
|
| 318 |
daily_kpi_df,
|
| 319 |
+
"availability_comment_daily",
|
| 320 |
"tch_abis_fail_daily_comment",
|
| 321 |
"sdcch_real_blocking_daily_comment",
|
| 322 |
new_column="sdcch_comments",
|
|
|
|
| 324 |
|
| 325 |
daily_kpi_df = combine_comments(
|
| 326 |
daily_kpi_df,
|
| 327 |
+
"availability_comment_daily",
|
| 328 |
"tch_abis_fail_daily_comment",
|
| 329 |
"tch_call_blocking_daily_comment",
|
| 330 |
new_column="tch_comments",
|
|
|
|
| 439 |
tch_blocking_threshold=tch_blocking_threshold,
|
| 440 |
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 441 |
number_of_threshold_days=number_of_threshold_days,
|
| 442 |
+
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 443 |
+
availability_threshold=availability_threshold,
|
| 444 |
)
|
| 445 |
|
| 446 |
bh_kpi_df = bh_kpi_dfs[0]
|
|
|
|
| 502 |
gsm_analysis_df["Target TRXs"] - gsm_analysis_df["number_trx_per_cell"]
|
| 503 |
)
|
| 504 |
|
| 505 |
+
# if "availability_comment_daily" equal to "Down Site" then "Down Site"
|
| 506 |
+
# if "availability_comment_daily" is not "Availability OK" and "tch_abis_fail_daily_comment" equal to "tch abis fail exceeded threshold" then "Availability and TX issues"
|
| 507 |
+
# if "availability_comment_daily" is not "Availability OK" and "tch_abis_fail_daily_comment" is empty then "Availability issues"
|
| 508 |
+
# if "availability_comment_daily" is "Availability OK" and "tch_abis_fail_daily_comment" equal to "tch abis fail exceeded threshold" then "TX issues"
|
| 509 |
# Else "Operational is OK"
|
| 510 |
gsm_analysis_df["operational_comment"] = np.select(
|
| 511 |
[
|
| 512 |
+
gsm_analysis_df["availability_comment_daily"] == "Down Site", # 1
|
| 513 |
+
(gsm_analysis_df["availability_comment_daily"] != "Availability OK")
|
| 514 |
& (
|
| 515 |
gsm_analysis_df["tch_abis_fail_daily_comment"]
|
| 516 |
== "tch abis fail exceeded threshold"
|
| 517 |
), # 2
|
| 518 |
+
(gsm_analysis_df["availability_comment_daily"] != "Availability OK")
|
| 519 |
& pd.isna(gsm_analysis_df["tch_abis_fail_daily_comment"]), # 3
|
| 520 |
+
(gsm_analysis_df["availability_comment_daily"] == "Availability OK")
|
| 521 |
& (
|
| 522 |
gsm_analysis_df["tch_abis_fail_daily_comment"]
|
| 523 |
== "tch abis fail exceeded threshold"
|
process_kpi/process_wbts_capacity.py
CHANGED
|
@@ -173,7 +173,7 @@ def bb_comments_analysis(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 173 |
df,
|
| 174 |
"num_bb_subunits_comment",
|
| 175 |
"Average_used_bb_ratio_comment",
|
| 176 |
-
"
|
| 177 |
new_column="bb_comments",
|
| 178 |
)
|
| 179 |
|
|
@@ -192,7 +192,7 @@ def ce_comments_analysis(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 192 |
df,
|
| 193 |
"avail_ce_comment",
|
| 194 |
"Average_used_ce_ratio_comment",
|
| 195 |
-
"
|
| 196 |
new_column="ce_comments",
|
| 197 |
)
|
| 198 |
|
|
|
|
| 173 |
df,
|
| 174 |
"num_bb_subunits_comment",
|
| 175 |
"Average_used_bb_ratio_comment",
|
| 176 |
+
"availability_comment_daily",
|
| 177 |
new_column="bb_comments",
|
| 178 |
)
|
| 179 |
|
|
|
|
| 192 |
df,
|
| 193 |
"avail_ce_comment",
|
| 194 |
"Average_used_ce_ratio_comment",
|
| 195 |
+
"availability_comment_daily",
|
| 196 |
new_column="ce_comments",
|
| 197 |
)
|
| 198 |
|
utils/kpi_analysis_utils.py
CHANGED
|
@@ -348,7 +348,10 @@ def create_dfs_per_kpi(
|
|
| 348 |
|
| 349 |
|
| 350 |
def cell_availability_analysis(
|
| 351 |
-
df: pd.DataFrame,
|
|
|
|
|
|
|
|
|
|
| 352 |
) -> pd.DataFrame:
|
| 353 |
"""
|
| 354 |
Analyze cell availability and categorize sites based on availability metrics.
|
|
@@ -360,12 +363,16 @@ def cell_availability_analysis(
|
|
| 360 |
Returns:
|
| 361 |
DataFrame with availability analysis and site status comments
|
| 362 |
"""
|
| 363 |
-
result_df = df.copy().fillna(0)
|
| 364 |
-
last_days_df = result_df.iloc[:, -days:]
|
| 365 |
-
result_df["
|
|
|
|
|
|
|
| 366 |
|
| 367 |
# Count the number of days above threshold
|
| 368 |
-
result_df[
|
|
|
|
|
|
|
| 369 |
lambda row: sum(1 for x in row if x <= availability_threshold), axis=1
|
| 370 |
)
|
| 371 |
|
|
@@ -380,9 +387,9 @@ def cell_availability_analysis(
|
|
| 380 |
else:
|
| 381 |
return "Availability OK"
|
| 382 |
|
| 383 |
-
result_df["
|
| 384 |
-
|
| 385 |
-
)
|
| 386 |
|
| 387 |
return result_df
|
| 388 |
|
|
@@ -395,7 +402,7 @@ def analyze_tch_abis_fails(
|
|
| 395 |
tch_abis_fails_threshold: int,
|
| 396 |
) -> pd.DataFrame:
|
| 397 |
|
| 398 |
-
result_df = df.copy()
|
| 399 |
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
|
| 400 |
# last_days_df = last_days_df.fillna(0)
|
| 401 |
|
|
|
|
| 348 |
|
| 349 |
|
| 350 |
def cell_availability_analysis(
|
| 351 |
+
df: pd.DataFrame,
|
| 352 |
+
days: int = 7,
|
| 353 |
+
availability_threshold: int = 95,
|
| 354 |
+
analysis_type: str = "daily",
|
| 355 |
) -> pd.DataFrame:
|
| 356 |
"""
|
| 357 |
Analyze cell availability and categorize sites based on availability metrics.
|
|
|
|
| 363 |
Returns:
|
| 364 |
DataFrame with availability analysis and site status comments
|
| 365 |
"""
|
| 366 |
+
result_df: pd.DataFrame = df.copy().fillna(0)
|
| 367 |
+
last_days_df: pd.DataFrame = result_df.iloc[:, -days:]
|
| 368 |
+
result_df[f"Average_cell_availability_{analysis_type.lower()}"] = last_days_df.mean(
|
| 369 |
+
axis=1
|
| 370 |
+
).round(2)
|
| 371 |
|
| 372 |
# Count the number of days above threshold
|
| 373 |
+
result_df[
|
| 374 |
+
f"number_of_days_exceeding_availability_threshold_{analysis_type.lower()}"
|
| 375 |
+
] = last_days_df.apply(
|
| 376 |
lambda row: sum(1 for x in row if x <= availability_threshold), axis=1
|
| 377 |
)
|
| 378 |
|
|
|
|
| 387 |
else:
|
| 388 |
return "Availability OK"
|
| 389 |
|
| 390 |
+
result_df[f"availability_comment_{analysis_type.lower()}"] = result_df[
|
| 391 |
+
f"Average_cell_availability_{analysis_type.lower()}"
|
| 392 |
+
].apply(categorize_availability)
|
| 393 |
|
| 394 |
return result_df
|
| 395 |
|
|
|
|
| 402 |
tch_abis_fails_threshold: int,
|
| 403 |
) -> pd.DataFrame:
|
| 404 |
|
| 405 |
+
result_df: pd.DataFrame = df.copy()
|
| 406 |
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
|
| 407 |
# last_days_df = last_days_df.fillna(0)
|
| 408 |
|