Lte capacity V2
Browse files- apps/kpi_analysis/lte_capacity.py +45 -6
- process_kpi/process_lte_capacity.py +84 -12
- utils/convert_to_excel.py +31 -9
- utils/kpi_analysis_utils.py +13 -8
apps/kpi_analysis/lte_capacity.py
CHANGED
|
@@ -34,6 +34,7 @@ with file2:
|
|
| 34 |
# Parameters
|
| 35 |
param_col1, param_col2 = st.columns(2)
|
| 36 |
param_col3, param_col4 = st.columns(2)
|
|
|
|
| 37 |
|
| 38 |
with param_col1:
|
| 39 |
num_last_days = st.number_input(
|
|
@@ -55,12 +56,23 @@ with param_col4:
|
|
| 55 |
"PRB usage threshold (%)", value=80.0, min_value=0.0, max_value=100.0
|
| 56 |
)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
if uploaded_dump is not None and uploaded_bh_report is not None:
|
| 66 |
if st.button("Analyze Data", type="primary"):
|
|
@@ -73,6 +85,7 @@ if uploaded_dump is not None and uploaded_bh_report is not None:
|
|
| 73 |
availability_threshold=availability_threshold,
|
| 74 |
prb_usage_threshold=prb_usage_threshold,
|
| 75 |
prb_diff_between_cells_threshold=prb_diff_between_cells,
|
|
|
|
| 76 |
)
|
| 77 |
if results is not None:
|
| 78 |
bh_report: pd.DataFrame = results[0]
|
|
@@ -205,3 +218,29 @@ if uploaded_dump is not None and uploaded_bh_report is not None:
|
|
| 205 |
texttemplate="%{value}", textfont_size=15, textposition="outside"
|
| 206 |
)
|
| 207 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# Parameters
|
| 35 |
param_col1, param_col2 = st.columns(2)
|
| 36 |
param_col3, param_col4 = st.columns(2)
|
| 37 |
+
param_col5, param_col6 = st.columns(2)
|
| 38 |
|
| 39 |
with param_col1:
|
| 40 |
num_last_days = st.number_input(
|
|
|
|
| 56 |
"PRB usage threshold (%)", value=80.0, min_value=0.0, max_value=100.0
|
| 57 |
)
|
| 58 |
|
| 59 |
+
with param_col5:
|
| 60 |
+
prb_diff_between_cells = st.number_input(
|
| 61 |
+
"Maximum PRB usage difference between cells (%)",
|
| 62 |
+
value=20.0,
|
| 63 |
+
min_value=0.0,
|
| 64 |
+
max_value=100.0,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
with param_col6:
|
| 68 |
+
# DL PRB Util p TTI Lev_10
|
| 69 |
+
# E-UTRAN Avg PRB usage per TTI DL
|
| 70 |
+
main_prb_to_use = st.selectbox(
|
| 71 |
+
"Main PRB to use",
|
| 72 |
+
["DL PRB Util p TTI Lev_10", "E-UTRAN Avg PRB usage per TTI DL"],
|
| 73 |
+
index=1,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
|
| 77 |
if uploaded_dump is not None and uploaded_bh_report is not None:
|
| 78 |
if st.button("Analyze Data", type="primary"):
|
|
|
|
| 85 |
availability_threshold=availability_threshold,
|
| 86 |
prb_usage_threshold=prb_usage_threshold,
|
| 87 |
prb_diff_between_cells_threshold=prb_diff_between_cells,
|
| 88 |
+
main_prb_to_use=main_prb_to_use,
|
| 89 |
)
|
| 90 |
if results is not None:
|
| 91 |
bh_report: pd.DataFrame = results[0]
|
|
|
|
| 218 |
texttemplate="%{value}", textfont_size=15, textposition="outside"
|
| 219 |
)
|
| 220 |
st.plotly_chart(fig, use_container_width=True)
|
| 221 |
+
# create a map plot with scatter_map with code ,Longitude,Latitude,final_comments
|
| 222 |
+
st.markdown("***")
|
| 223 |
+
st.markdown(":blue[**Final comments distribution**]")
|
| 224 |
+
map_df = lte_analysis_df[
|
| 225 |
+
["code", "Longitude", "Latitude", "final_comments"]
|
| 226 |
+
].dropna(subset=["code", "Longitude", "Latitude", "final_comments"])
|
| 227 |
+
# add size column equalt to 20
|
| 228 |
+
map_df["size"] = 20
|
| 229 |
+
|
| 230 |
+
fig = px.scatter_map(
|
| 231 |
+
map_df,
|
| 232 |
+
lat="Latitude",
|
| 233 |
+
lon="Longitude",
|
| 234 |
+
color="final_comments",
|
| 235 |
+
size="size",
|
| 236 |
+
zoom=10,
|
| 237 |
+
height=600,
|
| 238 |
+
title="Final comments distribution",
|
| 239 |
+
hover_data={
|
| 240 |
+
"code": True,
|
| 241 |
+
"final_comments": True,
|
| 242 |
+
},
|
| 243 |
+
hover_name="code",
|
| 244 |
+
)
|
| 245 |
+
fig.update_layout(mapbox_style="open-street-map")
|
| 246 |
+
st.plotly_chart(fig, use_container_width=True)
|
process_kpi/process_lte_capacity.py
CHANGED
|
@@ -17,6 +17,8 @@ LTE_ANALYSIS_COLUMNS = [
|
|
| 17 |
"code_sector",
|
| 18 |
"Region",
|
| 19 |
"site_config_band",
|
|
|
|
|
|
|
| 20 |
"LNCEL_name_l800",
|
| 21 |
"LNCEL_name_l1800",
|
| 22 |
"LNCEL_name_l2300",
|
|
@@ -27,6 +29,26 @@ LTE_ANALYSIS_COLUMNS = [
|
|
| 27 |
"avg_prb_usage_bh_l2300",
|
| 28 |
"avg_prb_usage_bh_l2600",
|
| 29 |
"avg_prb_usage_bh_l1800s",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
"num_congested_cells",
|
| 31 |
"num_cells",
|
| 32 |
"num_cell_with_kpi",
|
|
@@ -42,6 +64,8 @@ LTE_DATABASE_COLUMNS = [
|
|
| 42 |
"Region",
|
| 43 |
"site_config_band",
|
| 44 |
"final_name",
|
|
|
|
|
|
|
| 45 |
]
|
| 46 |
|
| 47 |
KPI_COLUMNS = [
|
|
@@ -50,11 +74,17 @@ KPI_COLUMNS = [
|
|
| 50 |
"Cell_Avail_excl_BLU",
|
| 51 |
"E_UTRAN_Avg_PRB_usage_per_TTI_DL",
|
| 52 |
"DL_PRB_Util_p_TTI_Lev_10",
|
|
|
|
|
|
|
|
|
|
| 53 |
]
|
| 54 |
PRB_COLUMNS = [
|
| 55 |
"LNCEL_name",
|
| 56 |
"avg_prb_usage_bh",
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
]
|
| 59 |
|
| 60 |
|
|
@@ -221,7 +251,9 @@ def lte_analysis_logic(
|
|
| 221 |
|
| 222 |
def dfs_per_band_cell(df: pd.DataFrame) -> pd.DataFrame:
|
| 223 |
# Base DataFrame with unique codes, Region, and site_config_band
|
| 224 |
-
all_codes_df = df[
|
|
|
|
|
|
|
| 225 |
|
| 226 |
# Configuration for sector groups and their respective LNCEL patterns and column suffixes
|
| 227 |
# Format: { "group_key": [(lncel_name_pattern_part, column_suffix), ...] }
|
|
@@ -265,11 +297,23 @@ def dfs_per_band_cell(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 265 |
# Select relevant columns and rename them for the merge
|
| 266 |
# This avoids pandas automatically adding _x, _y suffixes and then needing to rename them
|
| 267 |
df_to_merge = filtered_band_df[
|
| 268 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
].rename(
|
| 270 |
columns={
|
| 271 |
"LNCEL_name": f"LNCEL_name_{column_suffix}",
|
| 272 |
"avg_prb_usage_bh": f"avg_prb_usage_bh_{column_suffix}",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
}
|
| 274 |
)
|
| 275 |
|
|
@@ -282,6 +326,7 @@ def dfs_per_band_cell(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 282 |
|
| 283 |
# Concatenate all the processed sector DataFrames
|
| 284 |
all_sectors_dfs = pd.concat(all_processed_sectors_dfs, axis=0, ignore_index=True)
|
|
|
|
| 285 |
|
| 286 |
return all_sectors_dfs
|
| 287 |
|
|
@@ -311,6 +356,7 @@ def lte_bh_dfs_per_kpi(
|
|
| 311 |
prb_usage_threshold: int = 80,
|
| 312 |
prb_diff_between_cells_threshold: int = 20,
|
| 313 |
number_of_threshold_days: int = 3,
|
|
|
|
| 314 |
) -> pd.DataFrame:
|
| 315 |
|
| 316 |
# print(df.columns)
|
|
@@ -326,22 +372,46 @@ def lte_bh_dfs_per_kpi(
|
|
| 326 |
days=number_of_kpi_days,
|
| 327 |
availability_threshold=availability_threshold,
|
| 328 |
)
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
| 336 |
prb_lev10_usage_df = analyze_prb_usage(
|
| 337 |
df=pivoted_kpi_dfs["DL_PRB_Util_p_TTI_Lev_10"],
|
| 338 |
number_of_kpi_days=number_of_kpi_days,
|
| 339 |
prb_usage_threshold=prb_usage_threshold,
|
| 340 |
analysis_type="BH",
|
| 341 |
number_of_threshold_days=number_of_threshold_days,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
)
|
| 343 |
-
|
| 344 |
-
bh_kpi_df = pd.concat([cell_availability_df, prb_lev10_usage_df], axis=1)
|
| 345 |
bh_kpi_df = bh_kpi_df.reset_index()
|
| 346 |
prb_df = bh_kpi_df[PRB_COLUMNS]
|
| 347 |
|
|
@@ -382,6 +452,7 @@ def process_lte_bh_report(
|
|
| 382 |
availability_threshold: float,
|
| 383 |
prb_usage_threshold: float,
|
| 384 |
prb_diff_between_cells_threshold: float,
|
|
|
|
| 385 |
) -> dict:
|
| 386 |
"""
|
| 387 |
Process LTE Busy Hour report and perform capacity analysis
|
|
@@ -414,6 +485,7 @@ def process_lte_bh_report(
|
|
| 414 |
prb_usage_threshold=prb_usage_threshold,
|
| 415 |
prb_diff_between_cells_threshold=prb_diff_between_cells_threshold,
|
| 416 |
number_of_threshold_days=num_threshold_days,
|
|
|
|
| 417 |
)
|
| 418 |
|
| 419 |
# save_dataframe(pivoted_kpi_dfs, "LTE_BH_Report.csv")
|
|
|
|
| 17 |
"code_sector",
|
| 18 |
"Region",
|
| 19 |
"site_config_band",
|
| 20 |
+
"Longitude",
|
| 21 |
+
"Latitude",
|
| 22 |
"LNCEL_name_l800",
|
| 23 |
"LNCEL_name_l1800",
|
| 24 |
"LNCEL_name_l2300",
|
|
|
|
| 29 |
"avg_prb_usage_bh_l2300",
|
| 30 |
"avg_prb_usage_bh_l2600",
|
| 31 |
"avg_prb_usage_bh_l1800s",
|
| 32 |
+
"avg_prb_usage_bh_l800_2nd",
|
| 33 |
+
"avg_prb_usage_bh_l1800_2nd",
|
| 34 |
+
"avg_prb_usage_bh_l2300_2nd",
|
| 35 |
+
"avg_prb_usage_bh_l2600_2nd",
|
| 36 |
+
"avg_prb_usage_bh_l1800s_2nd",
|
| 37 |
+
"avg_act_ues_l800",
|
| 38 |
+
"avg_act_ues_l1800",
|
| 39 |
+
"avg_act_ues_l2300",
|
| 40 |
+
"avg_act_ues_l2600",
|
| 41 |
+
"avg_act_ues_l1800s",
|
| 42 |
+
"avg_dl_thp_l800",
|
| 43 |
+
"avg_dl_thp_l1800",
|
| 44 |
+
"avg_dl_thp_l2300",
|
| 45 |
+
"avg_dl_thp_l2600",
|
| 46 |
+
"avg_dl_thp_l1800s",
|
| 47 |
+
"avg_ul_thp_l800",
|
| 48 |
+
"avg_ul_thp_l1800",
|
| 49 |
+
"avg_ul_thp_l2300",
|
| 50 |
+
"avg_ul_thp_l2600",
|
| 51 |
+
"avg_ul_thp_l1800s",
|
| 52 |
"num_congested_cells",
|
| 53 |
"num_cells",
|
| 54 |
"num_cell_with_kpi",
|
|
|
|
| 64 |
"Region",
|
| 65 |
"site_config_band",
|
| 66 |
"final_name",
|
| 67 |
+
"Longitude",
|
| 68 |
+
"Latitude",
|
| 69 |
]
|
| 70 |
|
| 71 |
KPI_COLUMNS = [
|
|
|
|
| 74 |
"Cell_Avail_excl_BLU",
|
| 75 |
"E_UTRAN_Avg_PRB_usage_per_TTI_DL",
|
| 76 |
"DL_PRB_Util_p_TTI_Lev_10",
|
| 77 |
+
"Avg_PDCP_cell_thp_UL",
|
| 78 |
+
"Avg_PDCP_cell_thp_DL",
|
| 79 |
+
"Avg_act_UEs_DL",
|
| 80 |
]
|
| 81 |
PRB_COLUMNS = [
|
| 82 |
"LNCEL_name",
|
| 83 |
"avg_prb_usage_bh",
|
| 84 |
+
"avg_prb_usage_bh_2nd",
|
| 85 |
+
"avg_act_ues",
|
| 86 |
+
"avg_dl_thp",
|
| 87 |
+
"avg_ul_thp",
|
| 88 |
]
|
| 89 |
|
| 90 |
|
|
|
|
| 251 |
|
| 252 |
def dfs_per_band_cell(df: pd.DataFrame) -> pd.DataFrame:
|
| 253 |
# Base DataFrame with unique codes, Region, and site_config_band
|
| 254 |
+
all_codes_df = df[
|
| 255 |
+
["code", "Region", "site_config_band", "Longitude", "Latitude"]
|
| 256 |
+
].drop_duplicates()
|
| 257 |
|
| 258 |
# Configuration for sector groups and their respective LNCEL patterns and column suffixes
|
| 259 |
# Format: { "group_key": [(lncel_name_pattern_part, column_suffix), ...] }
|
|
|
|
| 297 |
# Select relevant columns and rename them for the merge
|
| 298 |
# This avoids pandas automatically adding _x, _y suffixes and then needing to rename them
|
| 299 |
df_to_merge = filtered_band_df[
|
| 300 |
+
[
|
| 301 |
+
"code",
|
| 302 |
+
"LNCEL_name",
|
| 303 |
+
"avg_prb_usage_bh",
|
| 304 |
+
"avg_prb_usage_bh_2nd",
|
| 305 |
+
"avg_act_ues",
|
| 306 |
+
"avg_dl_thp",
|
| 307 |
+
"avg_ul_thp",
|
| 308 |
+
]
|
| 309 |
].rename(
|
| 310 |
columns={
|
| 311 |
"LNCEL_name": f"LNCEL_name_{column_suffix}",
|
| 312 |
"avg_prb_usage_bh": f"avg_prb_usage_bh_{column_suffix}",
|
| 313 |
+
"avg_prb_usage_bh_2nd": f"avg_prb_usage_bh_{column_suffix}_2nd",
|
| 314 |
+
"avg_act_ues": f"avg_act_ues_{column_suffix}",
|
| 315 |
+
"avg_dl_thp": f"avg_dl_thp_{column_suffix}",
|
| 316 |
+
"avg_ul_thp": f"avg_ul_thp_{column_suffix}",
|
| 317 |
}
|
| 318 |
)
|
| 319 |
|
|
|
|
| 326 |
|
| 327 |
# Concatenate all the processed sector DataFrames
|
| 328 |
all_sectors_dfs = pd.concat(all_processed_sectors_dfs, axis=0, ignore_index=True)
|
| 329 |
+
# save_dataframe(all_sectors_dfs, "all_sectors_dfs.csv")
|
| 330 |
|
| 331 |
return all_sectors_dfs
|
| 332 |
|
|
|
|
| 356 |
prb_usage_threshold: int = 80,
|
| 357 |
prb_diff_between_cells_threshold: int = 20,
|
| 358 |
number_of_threshold_days: int = 3,
|
| 359 |
+
main_prb_to_use: str = "",
|
| 360 |
) -> pd.DataFrame:
|
| 361 |
|
| 362 |
# print(df.columns)
|
|
|
|
| 372 |
days=number_of_kpi_days,
|
| 373 |
availability_threshold=availability_threshold,
|
| 374 |
)
|
| 375 |
+
prb_usage_df = analyze_prb_usage(
|
| 376 |
+
df=pivoted_kpi_dfs["E_UTRAN_Avg_PRB_usage_per_TTI_DL"],
|
| 377 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 378 |
+
prb_usage_threshold=prb_usage_threshold,
|
| 379 |
+
analysis_type="BH",
|
| 380 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 381 |
+
suffix="" if main_prb_to_use == "E-UTRAN Avg PRB usage per TTI DL" else "_2nd",
|
| 382 |
+
)
|
| 383 |
prb_lev10_usage_df = analyze_prb_usage(
|
| 384 |
df=pivoted_kpi_dfs["DL_PRB_Util_p_TTI_Lev_10"],
|
| 385 |
number_of_kpi_days=number_of_kpi_days,
|
| 386 |
prb_usage_threshold=prb_usage_threshold,
|
| 387 |
analysis_type="BH",
|
| 388 |
number_of_threshold_days=number_of_threshold_days,
|
| 389 |
+
suffix="" if main_prb_to_use == "DL PRB Util p TTI Lev_10" else "_2nd",
|
| 390 |
+
)
|
| 391 |
+
act_ues_df = pivoted_kpi_dfs["Avg_act_UEs_DL"]
|
| 392 |
+
# Add Max and avg columns for act_ues_df
|
| 393 |
+
act_ues_df["max_act_ues"] = act_ues_df.max(axis=1)
|
| 394 |
+
act_ues_df["avg_act_ues"] = act_ues_df.mean(axis=1)
|
| 395 |
+
dl_thp_df = pivoted_kpi_dfs["Avg_PDCP_cell_thp_DL"]
|
| 396 |
+
# Add Max and avg columns for dl_thp_df
|
| 397 |
+
dl_thp_df["max_dl_thp"] = dl_thp_df.max(axis=1)
|
| 398 |
+
dl_thp_df["avg_dl_thp"] = dl_thp_df.mean(axis=1)
|
| 399 |
+
ul_thp_df = pivoted_kpi_dfs["Avg_PDCP_cell_thp_UL"]
|
| 400 |
+
# Add Max and avg columns for ul_thp_df
|
| 401 |
+
ul_thp_df["max_ul_thp"] = ul_thp_df.max(axis=1)
|
| 402 |
+
ul_thp_df["avg_ul_thp"] = ul_thp_df.mean(axis=1)
|
| 403 |
+
|
| 404 |
+
bh_kpi_df = pd.concat(
|
| 405 |
+
[
|
| 406 |
+
cell_availability_df,
|
| 407 |
+
prb_lev10_usage_df,
|
| 408 |
+
prb_usage_df,
|
| 409 |
+
act_ues_df,
|
| 410 |
+
dl_thp_df,
|
| 411 |
+
ul_thp_df,
|
| 412 |
+
],
|
| 413 |
+
axis=1,
|
| 414 |
)
|
|
|
|
|
|
|
| 415 |
bh_kpi_df = bh_kpi_df.reset_index()
|
| 416 |
prb_df = bh_kpi_df[PRB_COLUMNS]
|
| 417 |
|
|
|
|
| 452 |
availability_threshold: float,
|
| 453 |
prb_usage_threshold: float,
|
| 454 |
prb_diff_between_cells_threshold: float,
|
| 455 |
+
main_prb_to_use: str,
|
| 456 |
) -> dict:
|
| 457 |
"""
|
| 458 |
Process LTE Busy Hour report and perform capacity analysis
|
|
|
|
| 485 |
prb_usage_threshold=prb_usage_threshold,
|
| 486 |
prb_diff_between_cells_threshold=prb_diff_between_cells_threshold,
|
| 487 |
number_of_threshold_days=num_threshold_days,
|
| 488 |
+
main_prb_to_use=main_prb_to_use,
|
| 489 |
)
|
| 490 |
|
| 491 |
# save_dataframe(pivoted_kpi_dfs, "LTE_BH_Report.csv")
|
utils/convert_to_excel.py
CHANGED
|
@@ -149,16 +149,38 @@ def get_format_map_by_format_type(formats: dict, format_type: str) -> dict:
|
|
| 149 |
"code_sector": formats["blue"],
|
| 150 |
"Region": formats["blue"],
|
| 151 |
"site_config_band": formats["blue"],
|
| 152 |
-
"
|
| 153 |
-
"
|
| 154 |
-
"
|
| 155 |
-
"
|
| 156 |
-
"
|
|
|
|
|
|
|
| 157 |
"avg_prb_usage_bh_l800": formats["beurre"],
|
| 158 |
-
"avg_prb_usage_bh_l1800": formats["
|
| 159 |
-
"avg_prb_usage_bh_l2300": formats["
|
| 160 |
-
"avg_prb_usage_bh_l2600": formats["
|
| 161 |
-
"avg_prb_usage_bh_l1800s": formats["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
"num_congested_cells": formats["orange"],
|
| 163 |
"num_cells": formats["orange"],
|
| 164 |
"num_cell_with_kpi": formats["orange"],
|
|
|
|
| 149 |
"code_sector": formats["blue"],
|
| 150 |
"Region": formats["blue"],
|
| 151 |
"site_config_band": formats["blue"],
|
| 152 |
+
"Longitude": formats["blue"],
|
| 153 |
+
"Latitude": formats["blue"],
|
| 154 |
+
# "LNCEL_name_l800": formats["beurre"],
|
| 155 |
+
# "LNCEL_name_l1800": formats["purple5"],
|
| 156 |
+
# "LNCEL_name_l2300": formats["purple6"],
|
| 157 |
+
# "LNCEL_name_l2600": formats["blue_light"],
|
| 158 |
+
# "LNCEL_name_l1800s": formats["gray"],
|
| 159 |
"avg_prb_usage_bh_l800": formats["beurre"],
|
| 160 |
+
"avg_prb_usage_bh_l1800": formats["beurre"],
|
| 161 |
+
"avg_prb_usage_bh_l2300": formats["beurre"],
|
| 162 |
+
"avg_prb_usage_bh_l2600": formats["beurre"],
|
| 163 |
+
"avg_prb_usage_bh_l1800s": formats["beurre"],
|
| 164 |
+
"avg_prb_usage_bh_l800_2nd": formats["purple5"],
|
| 165 |
+
"avg_prb_usage_bh_l1800_2nd": formats["purple5"],
|
| 166 |
+
"avg_prb_usage_bh_l2300_2nd": formats["purple5"],
|
| 167 |
+
"avg_prb_usage_bh_l2600_2nd": formats["purple5"],
|
| 168 |
+
"avg_prb_usage_bh_l1800s_2nd": formats["purple5"],
|
| 169 |
+
"avg_act_ues_l800": formats["purple6"],
|
| 170 |
+
"avg_act_ues_l1800": formats["purple6"],
|
| 171 |
+
"avg_act_ues_l2300": formats["purple6"],
|
| 172 |
+
"avg_act_ues_l2600": formats["purple6"],
|
| 173 |
+
"avg_act_ues_l1800s": formats["purple6"],
|
| 174 |
+
"avg_dl_thp_l800": formats["blue_light"],
|
| 175 |
+
"avg_dl_thp_l1800": formats["blue_light"],
|
| 176 |
+
"avg_dl_thp_l2300": formats["blue_light"],
|
| 177 |
+
"avg_dl_thp_l2600": formats["blue_light"],
|
| 178 |
+
"avg_dl_thp_l1800s": formats["blue_light"],
|
| 179 |
+
"avg_ul_thp_l800": formats["gray"],
|
| 180 |
+
"avg_ul_thp_l1800": formats["gray"],
|
| 181 |
+
"avg_ul_thp_l2300": formats["gray"],
|
| 182 |
+
"avg_ul_thp_l2600": formats["gray"],
|
| 183 |
+
"avg_ul_thp_l1800s": formats["gray"],
|
| 184 |
"num_congested_cells": formats["orange"],
|
| 185 |
"num_cells": formats["orange"],
|
| 186 |
"num_cell_with_kpi": formats["orange"],
|
utils/kpi_analysis_utils.py
CHANGED
|
@@ -561,25 +561,30 @@ def analyze_prb_usage(
|
|
| 561 |
prb_usage_threshold: int,
|
| 562 |
analysis_type: str,
|
| 563 |
number_of_threshold_days: int,
|
|
|
|
| 564 |
) -> pd.DataFrame:
|
| 565 |
result_df = df.copy()
|
| 566 |
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
|
| 567 |
# last_days_df = last_days_df.fillna(0)
|
| 568 |
|
| 569 |
-
result_df[f"avg_prb_usage_{analysis_type.lower()}"] = last_days_df.mean(
|
| 570 |
axis=1
|
| 571 |
).round(2)
|
| 572 |
-
result_df[f"max_prb_usage_{analysis_type.lower()}"] = last_days_df.max(
|
|
|
|
|
|
|
| 573 |
# Count the number of days above threshold
|
| 574 |
-
result_df[
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
)
|
| 578 |
)
|
| 579 |
|
| 580 |
# Add the daily_prb_comment : if number_of_days_with_prb_usage_exceeded_daily is >= number_of_threshold_days : prb usage exceeded threshold , else : None
|
| 581 |
-
result_df[f"prb_usage_{analysis_type.lower()}_comment"] = np.where(
|
| 582 |
-
result_df[
|
|
|
|
|
|
|
| 583 |
>= number_of_threshold_days,
|
| 584 |
"PRB usage exceeded threshold",
|
| 585 |
None,
|
|
|
|
| 561 |
prb_usage_threshold: int,
|
| 562 |
analysis_type: str,
|
| 563 |
number_of_threshold_days: int,
|
| 564 |
+
suffix: str = "",
|
| 565 |
) -> pd.DataFrame:
|
| 566 |
result_df = df.copy()
|
| 567 |
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
|
| 568 |
# last_days_df = last_days_df.fillna(0)
|
| 569 |
|
| 570 |
+
result_df[f"avg_prb_usage_{analysis_type.lower()}{suffix}"] = last_days_df.mean(
|
| 571 |
axis=1
|
| 572 |
).round(2)
|
| 573 |
+
result_df[f"max_prb_usage_{analysis_type.lower()}{suffix}"] = last_days_df.max(
|
| 574 |
+
axis=1
|
| 575 |
+
)
|
| 576 |
# Count the number of days above threshold
|
| 577 |
+
result_df[
|
| 578 |
+
f"number_of_days_with_prb_usage_exceeded_{analysis_type.lower()}{suffix}"
|
| 579 |
+
] = last_days_df.apply(
|
| 580 |
+
lambda row: sum(1 for x in row if x >= prb_usage_threshold), axis=1
|
| 581 |
)
|
| 582 |
|
| 583 |
# Add the daily_prb_comment : if number_of_days_with_prb_usage_exceeded_daily is >= number_of_threshold_days : prb usage exceeded threshold , else : None
|
| 584 |
+
result_df[f"prb_usage_{analysis_type.lower()}{suffix}_comment"] = np.where(
|
| 585 |
+
result_df[
|
| 586 |
+
f"number_of_days_with_prb_usage_exceeded_{analysis_type.lower()}{suffix}"
|
| 587 |
+
]
|
| 588 |
>= number_of_threshold_days,
|
| 589 |
"PRB usage exceeded threshold",
|
| 590 |
None,
|