GSM CAPACITY initial commit
Browse files- apps/kpi_analysis/gsm_capacity.py +118 -0
- assets/gsm_capacity.png +0 -0
- process_kpi/gsm_kpi_requirements.md +47 -0
- process_kpi/process_gsm_capacity.py +408 -0
apps/kpi_analysis/gsm_capacity.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import plotly.express as px
|
| 3 |
+
import streamlit as st
|
| 4 |
+
|
| 5 |
+
from process_kpi.process_gsm_capacity import GsmCapacity, analyze_gsm_data
|
| 6 |
+
from utils.convert_to_excel import ( # Import convert_dfs from the appropriate module
|
| 7 |
+
convert_dfs,
|
| 8 |
+
convert_gsm_dfs,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
st.title(" 📊 GSM Capacity Analysis")
|
| 12 |
+
doc_col, image_col = st.columns(2)
|
| 13 |
+
|
| 14 |
+
with doc_col:
|
| 15 |
+
st.write(
|
| 16 |
+
"""
|
| 17 |
+
The report should be run with a minimum of 3 days of data.
|
| 18 |
+
- Daily Aggregated
|
| 19 |
+
- Site level
|
| 20 |
+
- Exported in CSV format.
|
| 21 |
+
"""
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
with image_col:
|
| 25 |
+
st.image("./assets/gsm_capacity.png", width=250)
|
| 26 |
+
|
| 27 |
+
file1, file2, file3 = st.columns(3)
|
| 28 |
+
|
| 29 |
+
with file1:
|
| 30 |
+
uploaded_dump = st.file_uploader("Upload Dump file in xlsb format", type="xlsb")
|
| 31 |
+
with file2:
|
| 32 |
+
uploaded_daily_report = st.file_uploader(
|
| 33 |
+
"Upload Daily Report in CSV format", type="csv"
|
| 34 |
+
)
|
| 35 |
+
with file3:
|
| 36 |
+
uploaded_bh_report = st.file_uploader(
|
| 37 |
+
"Upload Busy Hour Report in CSV format", type="csv"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
col1, col2 = st.columns(2)
|
| 42 |
+
|
| 43 |
+
threshold_col1, threshold_col2 = st.columns(2)
|
| 44 |
+
threshold_col3, threshold_col4 = st.columns(2)
|
| 45 |
+
|
| 46 |
+
if (
|
| 47 |
+
uploaded_dump is not None
|
| 48 |
+
and uploaded_daily_report is not None
|
| 49 |
+
and uploaded_bh_report is not None
|
| 50 |
+
):
|
| 51 |
+
# WbtsCapacity.final_results = None
|
| 52 |
+
with col1:
|
| 53 |
+
number_of_kpi_days = st.number_input(
|
| 54 |
+
"Number of days for analysis",
|
| 55 |
+
min_value=3,
|
| 56 |
+
max_value=30,
|
| 57 |
+
value=7,
|
| 58 |
+
)
|
| 59 |
+
with col2:
|
| 60 |
+
number_of_threshold_days = st.number_input(
|
| 61 |
+
"Number of days for threshold",
|
| 62 |
+
min_value=1,
|
| 63 |
+
max_value=30,
|
| 64 |
+
value=3,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
with threshold_col1:
|
| 68 |
+
availability_threshold = st.number_input(
|
| 69 |
+
"Availability Threshold", min_value=1, max_value=100, value=95
|
| 70 |
+
)
|
| 71 |
+
with threshold_col2:
|
| 72 |
+
tch_abis_fails_threshold = st.number_input(
|
| 73 |
+
"TCH ABIS Fails Threshold", min_value=0, value=10
|
| 74 |
+
)
|
| 75 |
+
with threshold_col3:
|
| 76 |
+
sddch_blocking_threshold = st.number_input(
|
| 77 |
+
"SDDCH Blocking Threshold", min_value=0.1, value=0.5
|
| 78 |
+
)
|
| 79 |
+
with threshold_col4:
|
| 80 |
+
tch_blocking_threshold = st.number_input(
|
| 81 |
+
"TCH Blocking Threshold", min_value=0.1, value=0.5
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
if st.button("Analyze Data", type="primary"):
|
| 85 |
+
dfs = analyze_gsm_data(
|
| 86 |
+
dump_path=uploaded_dump,
|
| 87 |
+
daily_report_path=uploaded_daily_report,
|
| 88 |
+
bh_report_path=uploaded_bh_report,
|
| 89 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 90 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 91 |
+
availability_threshold=availability_threshold,
|
| 92 |
+
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 93 |
+
sddch_blocking_threshold=sddch_blocking_threshold,
|
| 94 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
if dfs is not None:
|
| 98 |
+
gsm_analysis_df = dfs[0]
|
| 99 |
+
bh_kpi_df = dfs[1]
|
| 100 |
+
GsmCapacity.final_results = convert_gsm_dfs(
|
| 101 |
+
[gsm_analysis_df, bh_kpi_df], ["GSM_Analysis", "BH_KPI_Analysis"]
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# GsmCapacity.final_results = convert_gsm_dfs(
|
| 105 |
+
# [gsm_analysis_df], ["GSM_Analysis"]
|
| 106 |
+
# )
|
| 107 |
+
|
| 108 |
+
if GsmCapacity.final_results is not None:
|
| 109 |
+
st.download_button(
|
| 110 |
+
on_click="ignore",
|
| 111 |
+
type="primary",
|
| 112 |
+
label="Download the Analysis Report",
|
| 113 |
+
data=GsmCapacity.final_results,
|
| 114 |
+
file_name="GSM_Analysis_Report.xlsx",
|
| 115 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
st.write(gsm_analysis_df)
|
assets/gsm_capacity.png
ADDED
|
process_kpi/gsm_kpi_requirements.md
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Required Input
|
| 2 |
+
|
| 3 |
+
- BH report
|
| 4 |
+
- Daily Report
|
| 5 |
+
- Dump file (2G dump)
|
| 6 |
+
- Number of last day for the analysis
|
| 7 |
+
- Number of days for blocking
|
| 8 |
+
- Sddch blocking threshold
|
| 9 |
+
- TCH blocking threshold
|
| 10 |
+
- Availability threshold
|
| 11 |
+
- TCH abis fails threshold
|
| 12 |
+
|
| 13 |
+
Analyse
|
| 14 |
+
|
| 15 |
+
DUMP
|
| 16 |
+
|
| 17 |
+
- Check that mandatory sheet exists in the dump
|
| 18 |
+
- Parse 2G databases
|
| 19 |
+
- Get number of TRX,TCH,SDCCH,amrSegLoadDepTchRateLower,amrSegLoadDepTchRateUpper from databases
|
| 20 |
+
- Add "GPRS" colomn equal to (dedicatedGPRScapacity * number_tch_per_cell)/100
|
| 21 |
+
- Get "Coef HF rate" by mapping "amrSegLoadDepTchRateLower" to 2G analysis_utility "hf_rate_coef" dict
|
| 22 |
+
- "TCH Actual HR%" equal to "number of TCH" multiplyed by "Coef HF rate"
|
| 23 |
+
- Get "Offered Traffic" by mapping approximate "TCH Actual HR%" to 2G analysis_utility "erlangB" dict
|
| 24 |
+
|
| 25 |
+
BH DATA
|
| 26 |
+
|
| 27 |
+
- Pivot KPI in BH report
|
| 28 |
+
- Calculate Average and Max of Traffic
|
| 29 |
+
- Average of TCH blocking
|
| 30 |
+
- Average of SDCCH blocking
|
| 31 |
+
- Count number of Days with TCH blocking exceeded TCH blocking threshold
|
| 32 |
+
- Count number of Days with SDCCH blocking exceeded Sddch blocking threshold
|
| 33 |
+
- Count number of Days with Availability below Availability threshold
|
| 34 |
+
- "TCH UTILIZATION (@Max Traffic)" equal to "Max_Trafic" divided by "offered Traffic"
|
| 35 |
+
- Add "ErlabngB_value" =MAX TRAFFIC/(1-(MAX TCH call blocking/200))
|
| 36 |
+
- Get "Target FR CHs" by mapping "ERLANG value" to 2G analysis_utility "erlangB" dict
|
| 37 |
+
- "Target HR CHs" equal to "Target FR CHs" * 2
|
| 38 |
+
- Get "Signal" and "GPRS" value from databases
|
| 39 |
+
- Target TCHs equal to Target HR CHs + Signal + GPRS + SDCCH
|
| 40 |
+
- "Target TRXs" equal to roundup(Target TCHs/8)
|
| 41 |
+
- "# of required TRXs" equal to difference between "Target TRXs" and "number of TRX"
|
| 42 |
+
|
| 43 |
+
Daily DATA
|
| 44 |
+
|
| 45 |
+
- Pivot KPI in Daily Report
|
| 46 |
+
- Count number of Days with Availability below Availability threshold
|
| 47 |
+
- Count number of Days with abis fails exceeded TCH abis fails threshold
|
process_kpi/process_gsm_capacity.py
ADDED
|
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
from queries.process_gsm import combined_gsm_database
|
| 5 |
+
from utils.check_sheet_exist import execute_checks_sheets_exist
|
| 6 |
+
from utils.convert_to_excel import convert_dfs, save_dataframe
|
| 7 |
+
from utils.kpi_analysis_utils import (
|
| 8 |
+
GsmAnalysis,
|
| 9 |
+
create_daily_date,
|
| 10 |
+
create_dfs_per_kpi,
|
| 11 |
+
create_hourly_date,
|
| 12 |
+
kpi_naming_cleaning,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GsmCapacity:
|
| 17 |
+
final_results = None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
GSM_COLUMNS = [
|
| 21 |
+
"ID_BTS",
|
| 22 |
+
"site_name",
|
| 23 |
+
"name",
|
| 24 |
+
"BSC",
|
| 25 |
+
"BCF",
|
| 26 |
+
"BTS",
|
| 27 |
+
"code",
|
| 28 |
+
"Region",
|
| 29 |
+
"adminState",
|
| 30 |
+
"frequencyBandInUse",
|
| 31 |
+
"amrSegLoadDepTchRateLower",
|
| 32 |
+
"amrSegLoadDepTchRateUpper",
|
| 33 |
+
"dedicatedGPRScapacity",
|
| 34 |
+
"defaultGPRScapacity",
|
| 35 |
+
"cellId",
|
| 36 |
+
"band",
|
| 37 |
+
"site_config_band",
|
| 38 |
+
"trxRfPower",
|
| 39 |
+
"BCCH",
|
| 40 |
+
"number_trx_per_cell",
|
| 41 |
+
"number_trx_per_bcf",
|
| 42 |
+
"TRX_TCH",
|
| 43 |
+
"MAL_TCH",
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
TRX_COLUMNS = [
|
| 47 |
+
"ID_BTS",
|
| 48 |
+
"number_tch_per_cell",
|
| 49 |
+
"number_sd_per_cell",
|
| 50 |
+
"number_bcch_per_cell",
|
| 51 |
+
"number_ccch_per_cell",
|
| 52 |
+
"number_cbc_per_cell",
|
| 53 |
+
"number_total_channels_per_cell",
|
| 54 |
+
"number_signals_per_cell",
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
KPI_COLUMNS = [
|
| 58 |
+
"date",
|
| 59 |
+
"BTS_name",
|
| 60 |
+
"TCH_availability_ratio",
|
| 61 |
+
"2G_Carried_Traffic",
|
| 62 |
+
"TCH_call_blocking",
|
| 63 |
+
"TCH_ABIS_FAIL_CALL_c001084",
|
| 64 |
+
"SDCCH_real_blocking",
|
| 65 |
+
]
|
| 66 |
+
BH_COLUMNS_FOR_CAPACITY = [
|
| 67 |
+
"Max_Traffic BH",
|
| 68 |
+
"Avg_Traffic BH",
|
| 69 |
+
"Max_tch_call_blocking BH",
|
| 70 |
+
"Avg_tch_call_blocking BH",
|
| 71 |
+
"number_of_days_with_tch_blocking_exceeded",
|
| 72 |
+
"Max_sdcch_real_blocking BH",
|
| 73 |
+
"Avg_sdcch_real_blocking BH",
|
| 74 |
+
"number_of_days_with_sdcch_blocking_exceeded",
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def bh_tch_call_blocking_analysis(
|
| 79 |
+
df: pd.DataFrame,
|
| 80 |
+
number_of_kpi_days: int,
|
| 81 |
+
tch_blocking_threshold: int,
|
| 82 |
+
number_of_threshold_days: int,
|
| 83 |
+
) -> pd.DataFrame:
|
| 84 |
+
|
| 85 |
+
result_df = df.copy()
|
| 86 |
+
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
| 87 |
+
# last_days_df = last_days_df.fillna(0)
|
| 88 |
+
|
| 89 |
+
result_df["Avg_tch_call_blocking BH"] = last_days_df.mean(axis=1).round(2)
|
| 90 |
+
result_df["Max_tch_call_blocking BH"] = last_days_df.max(axis=1)
|
| 91 |
+
# Count the number of days above threshold
|
| 92 |
+
result_df["number_of_days_with_tch_blocking_exceeded"] = last_days_df.apply(
|
| 93 |
+
lambda row: sum(1 for x in row if x >= tch_blocking_threshold), axis=1
|
| 94 |
+
)
|
| 95 |
+
return result_df
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def bh_sdcch_call_blocking_analysis(
|
| 99 |
+
df: pd.DataFrame,
|
| 100 |
+
number_of_kpi_days: int,
|
| 101 |
+
sdcch_blocking_threshold: int,
|
| 102 |
+
number_of_threshold_days: int,
|
| 103 |
+
) -> pd.DataFrame:
|
| 104 |
+
|
| 105 |
+
result_df = df.copy()
|
| 106 |
+
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
| 107 |
+
# last_days_df = last_days_df.fillna(0)
|
| 108 |
+
|
| 109 |
+
result_df["Avg_sdcch_real_blocking BH"] = last_days_df.mean(axis=1).round(2)
|
| 110 |
+
result_df["Max_sdcch_real_blocking BH"] = last_days_df.max(axis=1)
|
| 111 |
+
# Count the number of days above threshold
|
| 112 |
+
result_df["number_of_days_with_sdcch_blocking_exceeded"] = last_days_df.apply(
|
| 113 |
+
lambda row: sum(1 for x in row if x >= sdcch_blocking_threshold), axis=1
|
| 114 |
+
)
|
| 115 |
+
return result_df
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def bh_traffic_analysis(
|
| 119 |
+
df: pd.DataFrame,
|
| 120 |
+
number_of_kpi_days: int,
|
| 121 |
+
) -> pd.DataFrame:
|
| 122 |
+
|
| 123 |
+
result_df = df.copy()
|
| 124 |
+
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
| 125 |
+
# last_days_df = last_days_df.fillna(0)
|
| 126 |
+
|
| 127 |
+
result_df["Avg_Traffic BH"] = last_days_df.mean(axis=1).round(2)
|
| 128 |
+
result_df["Max_Traffic BH"] = last_days_df.max(axis=1)
|
| 129 |
+
return result_df
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def bh_dfs_per_kpi(
|
| 133 |
+
df: pd.DataFrame,
|
| 134 |
+
number_of_kpi_days: int = 7,
|
| 135 |
+
tch_blocking_threshold: int = 0.50,
|
| 136 |
+
sdcch_blocking_threshold: int = 0.50,
|
| 137 |
+
number_of_threshold_days: int = 3,
|
| 138 |
+
) -> pd.DataFrame:
|
| 139 |
+
"""
|
| 140 |
+
Create pivoted DataFrames for each KPI and perform analysis.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
df: DataFrame containing KPI data
|
| 144 |
+
number_of_kpi_days: Number of days to analyze
|
| 145 |
+
threshold: Utilization threshold percentage for flagging
|
| 146 |
+
number_of_threshold_days: Minimum days above threshold to flag for upgrade
|
| 147 |
+
|
| 148 |
+
Returns:
|
| 149 |
+
DataFrame with combined analysis results
|
| 150 |
+
"""
|
| 151 |
+
pivoted_kpi_dfs = {}
|
| 152 |
+
|
| 153 |
+
pivoted_kpi_dfs = create_dfs_per_kpi(
|
| 154 |
+
df=df,
|
| 155 |
+
pivot_date_column="date",
|
| 156 |
+
pivot_name_column="BTS_name",
|
| 157 |
+
kpi_columns_from=2,
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
tch_call_blocking_df: pd.DataFrame = pivoted_kpi_dfs["TCH_call_blocking"]
|
| 161 |
+
sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
|
| 162 |
+
Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
|
| 163 |
+
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
|
| 164 |
+
|
| 165 |
+
# ANALISYS
|
| 166 |
+
|
| 167 |
+
tch_call_blocking_df = bh_tch_call_blocking_analysis(
|
| 168 |
+
df=tch_call_blocking_df,
|
| 169 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 170 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
| 171 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
sdcch_real_blocking_df = bh_sdcch_call_blocking_analysis(
|
| 175 |
+
df=sdcch_real_blocking_df,
|
| 176 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 177 |
+
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 178 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
Carried_Traffic_df = bh_traffic_analysis(
|
| 182 |
+
df=Carried_Traffic_df,
|
| 183 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Carried_Traffic_df["Max_Traffic BH"] = Carried_Traffic_df.max(axis=1)
|
| 187 |
+
# Carried_Traffic_df["Avg_Traffic BH"] = Carried_Traffic_df.mean(axis=1)
|
| 188 |
+
|
| 189 |
+
bh_kpi_df = pd.concat(
|
| 190 |
+
[
|
| 191 |
+
tch_availability_ratio_df,
|
| 192 |
+
Carried_Traffic_df,
|
| 193 |
+
tch_call_blocking_df,
|
| 194 |
+
sdcch_real_blocking_df,
|
| 195 |
+
],
|
| 196 |
+
axis=1,
|
| 197 |
+
)
|
| 198 |
+
# print(Carried_Traffic_df)
|
| 199 |
+
|
| 200 |
+
return bh_kpi_df
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def analyse_bh_data(
|
| 204 |
+
bh_report_path: str,
|
| 205 |
+
number_of_kpi_days: int,
|
| 206 |
+
tch_blocking_threshold: int,
|
| 207 |
+
sdcch_blocking_threshold: int,
|
| 208 |
+
number_of_threshold_days: int,
|
| 209 |
+
) -> pd.DataFrame:
|
| 210 |
+
df = pd.read_csv(bh_report_path, delimiter=";")
|
| 211 |
+
df = kpi_naming_cleaning(df)
|
| 212 |
+
df = create_hourly_date(df)
|
| 213 |
+
df = df[KPI_COLUMNS]
|
| 214 |
+
df = bh_dfs_per_kpi(
|
| 215 |
+
df=df,
|
| 216 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 217 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
| 218 |
+
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
| 219 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
bh_df_for_capacity = df.copy()
|
| 223 |
+
bh_df_for_capacity = bh_df_for_capacity[BH_COLUMNS_FOR_CAPACITY]
|
| 224 |
+
bh_df_for_capacity = bh_df_for_capacity.reset_index()
|
| 225 |
+
|
| 226 |
+
# If columns have multiple levels (MultiIndex), flatten them
|
| 227 |
+
if isinstance(bh_df_for_capacity.columns, pd.MultiIndex):
|
| 228 |
+
bh_df_for_capacity.columns = [
|
| 229 |
+
"_".join([str(el) for el in col if el])
|
| 230 |
+
for col in bh_df_for_capacity.columns.values
|
| 231 |
+
]
|
| 232 |
+
# bh_df_for_capacity = bh_df_for_capacity.reset_index()
|
| 233 |
+
|
| 234 |
+
# rename Bts_name to name
|
| 235 |
+
bh_df_for_capacity = bh_df_for_capacity.rename(columns={"BTS_name": "name"})
|
| 236 |
+
|
| 237 |
+
return [bh_df_for_capacity, df]
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def daily_dfs_per_kpi(
|
| 241 |
+
df: pd.DataFrame,
|
| 242 |
+
number_of_kpi_days: int = 7,
|
| 243 |
+
availability_threshold: int = 95,
|
| 244 |
+
number_of_threshold_days: int = 3,
|
| 245 |
+
tch_abis_fails_threshold: int = 10,
|
| 246 |
+
) -> pd.DataFrame:
|
| 247 |
+
"""
|
| 248 |
+
Create pivoted DataFrames for each KPI and perform analysis.
|
| 249 |
+
|
| 250 |
+
Args:
|
| 251 |
+
df: DataFrame containing KPI data
|
| 252 |
+
number_of_kpi_days: Number of days to analyze
|
| 253 |
+
threshold: Utilization threshold percentage for flagging
|
| 254 |
+
number_of_threshold_days: Minimum days above threshold to flag for upgrade
|
| 255 |
+
|
| 256 |
+
Returns:
|
| 257 |
+
DataFrame with combined analysis results
|
| 258 |
+
"""
|
| 259 |
+
pivoted_kpi_dfs = {}
|
| 260 |
+
|
| 261 |
+
pivoted_kpi_dfs = create_dfs_per_kpi(
|
| 262 |
+
df=df,
|
| 263 |
+
pivot_date_column="date",
|
| 264 |
+
pivot_name_column="BTS_name",
|
| 265 |
+
kpi_columns_from=2,
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
tch_call_blocking_df: pd.DataFrame = pivoted_kpi_dfs["TCH_call_blocking"]
|
| 269 |
+
sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
|
| 270 |
+
Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
|
| 271 |
+
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
|
| 272 |
+
tch_abis_fails_df: pd.DataFrame = pivoted_kpi_dfs["TCH_ABIS_FAIL_CALL_c001084"]
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def analyse_daily_data(
|
| 276 |
+
daily_report_path: str,
|
| 277 |
+
number_of_kpi_days: int,
|
| 278 |
+
tch_abis_fails_threshold: int,
|
| 279 |
+
availability_threshold: int,
|
| 280 |
+
number_of_threshold_days: int,
|
| 281 |
+
) -> pd.DataFrame:
|
| 282 |
+
df = pd.read_csv(daily_report_path, delimiter=";")
|
| 283 |
+
df = kpi_naming_cleaning(df)
|
| 284 |
+
df = create_daily_date(df)
|
| 285 |
+
df = df[KPI_COLUMNS]
|
| 286 |
+
df = daily_dfs_per_kpi(
|
| 287 |
+
df=df,
|
| 288 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 289 |
+
availability_threshold=availability_threshold,
|
| 290 |
+
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 291 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 292 |
+
)
|
| 293 |
+
# print(df)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def get_gsm_databases(dump_path: str) -> pd.DataFrame:
|
| 297 |
+
|
| 298 |
+
dfs = combined_gsm_database(dump_path)
|
| 299 |
+
bts_df: pd.DataFrame = dfs[0]
|
| 300 |
+
trx_df: pd.DataFrame = dfs[2]
|
| 301 |
+
|
| 302 |
+
# Clean GSM df
|
| 303 |
+
bts_df = bts_df[GSM_COLUMNS]
|
| 304 |
+
trx_df = trx_df[TRX_COLUMNS]
|
| 305 |
+
|
| 306 |
+
# Remove duplicate in TRX df
|
| 307 |
+
trx_df = trx_df.drop_duplicates(subset=["ID_BTS"])
|
| 308 |
+
|
| 309 |
+
gsm_df = pd.merge(bts_df, trx_df, on="ID_BTS", how="left")
|
| 310 |
+
|
| 311 |
+
# add hf_rate_coef
|
| 312 |
+
gsm_df["hf_rate_coef"] = gsm_df["amrSegLoadDepTchRateLower"].map(
|
| 313 |
+
GsmAnalysis.hf_rate_coef
|
| 314 |
+
)
|
| 315 |
+
# Add "GPRS" colomn equal to (dedicatedGPRScapacity * number_tch_per_cell)/100
|
| 316 |
+
gsm_df["GPRS"] = (
|
| 317 |
+
gsm_df["dedicatedGPRScapacity"] * gsm_df["number_tch_per_cell"]
|
| 318 |
+
) / 100
|
| 319 |
+
|
| 320 |
+
# "TCH Actual HR%" equal to "number of TCH" multiplyed by "Coef HF rate"
|
| 321 |
+
gsm_df["TCH Actual HR%"] = gsm_df["number_tch_per_cell"] * gsm_df["hf_rate_coef"]
|
| 322 |
+
|
| 323 |
+
# Remove empty rows
|
| 324 |
+
gsm_df = gsm_df.dropna(subset=["TCH Actual HR%"])
|
| 325 |
+
|
| 326 |
+
# Get "Offered Traffic BH" by mapping approximate "TCH Actual HR%" to 2G analysis_utility "erlangB" dict
|
| 327 |
+
gsm_df["Offered Traffic BH"] = gsm_df["TCH Actual HR%"].apply(
|
| 328 |
+
lambda x: GsmAnalysis.erlangB_table.get(int(x), 0)
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
# save_dataframe(gsm_df, "GSM")
|
| 332 |
+
return gsm_df
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def analyze_gsm_data(
|
| 336 |
+
dump_path: str,
|
| 337 |
+
daily_report_path: str,
|
| 338 |
+
bh_report_path: str,
|
| 339 |
+
number_of_kpi_days: int,
|
| 340 |
+
number_of_threshold_days: int,
|
| 341 |
+
availability_threshold: int,
|
| 342 |
+
tch_abis_fails_threshold: int,
|
| 343 |
+
sddch_blocking_threshold: float,
|
| 344 |
+
tch_blocking_threshold: float,
|
| 345 |
+
):
|
| 346 |
+
# print("Analyzing data...")
|
| 347 |
+
# print(f"Number of days: {number_of_kpi_days}")
|
| 348 |
+
# print(f"availability_threshold: {availability_threshold}")
|
| 349 |
+
|
| 350 |
+
analyse_daily_data(
|
| 351 |
+
daily_report_path=daily_report_path,
|
| 352 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 353 |
+
availability_threshold=availability_threshold,
|
| 354 |
+
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
| 355 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
gsm_database_df: pd.DataFrame = get_gsm_databases(dump_path)
|
| 359 |
+
|
| 360 |
+
bh_kpi_dfs = analyse_bh_data(
|
| 361 |
+
bh_report_path=bh_report_path,
|
| 362 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 363 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
| 364 |
+
sdcch_blocking_threshold=sddch_blocking_threshold,
|
| 365 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
bh_kpi_df = bh_kpi_dfs[0]
|
| 369 |
+
bh_kpi_full_df = bh_kpi_dfs[1]
|
| 370 |
+
|
| 371 |
+
gsm_analysis_df = gsm_database_df.merge(bh_kpi_df, on="name", how="left")
|
| 372 |
+
|
| 373 |
+
# "TCH UTILIZATION (@Max Traffic)" equal to "(Max_Trafic" divided by "Offered Traffic BH)*100"
|
| 374 |
+
gsm_analysis_df["TCH UTILIZATION (@Max Traffic)"] = (
|
| 375 |
+
gsm_analysis_df["Max_Traffic BH"] / gsm_analysis_df["Offered Traffic BH"]
|
| 376 |
+
) * 100
|
| 377 |
+
|
| 378 |
+
# Add "ERLANGB value" =MAX TRAFFIC/(1-(MAX TCH call blocking/200))
|
| 379 |
+
gsm_analysis_df["ErlabngB_value"] = gsm_analysis_df["Max_Traffic BH"] / (
|
| 380 |
+
1 - (gsm_analysis_df["Max_tch_call_blocking BH"] / 200)
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
# - Get "Target FR CHs" by mapping "ERLANG value" to 2G analysis_utility "erlangB" dict
|
| 384 |
+
gsm_analysis_df["Target FR CHs"] = gsm_analysis_df["ErlabngB_value"].apply(
|
| 385 |
+
lambda x: GsmAnalysis.erlangB_table.get(int(x) if pd.notnull(x) else 0, 0)
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
# "Target HR CHs" equal to "Target FR CHs" * 2
|
| 389 |
+
gsm_analysis_df["Target HR CHs"] = gsm_analysis_df["Target FR CHs"] * 2
|
| 390 |
+
|
| 391 |
+
# - Target TCHs equal to Target HR CHs + Signal + GPRS + SDCCH
|
| 392 |
+
gsm_analysis_df["Target TCHs"] = (
|
| 393 |
+
gsm_analysis_df["Target HR CHs"]
|
| 394 |
+
+ gsm_analysis_df["number_signals_per_cell"]
|
| 395 |
+
+ gsm_analysis_df["GPRS"]
|
| 396 |
+
+ gsm_analysis_df["number_sd_per_cell"]
|
| 397 |
+
)
|
| 398 |
+
# "Target TRXs" equal to roundup(Target TCHs/8)
|
| 399 |
+
gsm_analysis_df["Target TRXs"] = np.ceil(
|
| 400 |
+
gsm_analysis_df["Target TCHs"] / 8
|
| 401 |
+
) # df["Target TCHs"] / 8
|
| 402 |
+
|
| 403 |
+
# "Numberof required TRXs" equal to difference between "Target TRXs" and "number_trx_per_cell"
|
| 404 |
+
gsm_analysis_df["Numberof required TRXs"] = (
|
| 405 |
+
gsm_analysis_df["Target TRXs"] - gsm_analysis_df["number_trx_per_cell"]
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
return [gsm_analysis_df, bh_kpi_full_df]
|