import pandas as pd from geopy.distance import geodesic # Imported but not used — consider removing from queries.process_gsm import process_gsm_data from queries.process_lte import process_lte_data from queries.process_wcdma import process_wcdma_data from utils.config_band import adjl_band from utils.convert_to_excel import convert_dfs, save_dataframe from utils.utils_vars import UtilsVars # ------------------------------- # Constants # ------------------------------- ADJL_GSM_COLUMNS = ["BSC", "BCF", "BTS", "ADJL", "earfcn", "lteAdjCellTac"] ADJL_WCDMA_COLUMNS = ["RNC", "WBTS", "WCEL", "ADJL", "AdjLEARFCN"] BTS_COLUMNS = ["ID_BTS", "name", "Code_Sector"] WCEL_COLUMNS = ["ID_WCEL", "name", "Code_Sector"] LTE_COLUMNS_CONFIG = ["Code_Sector", "site_config_band"] LTE_COLUMNS_TAC = ["Code_Sector", "tac", "band"] LTE_COLUMNS_ADJL = ["Code_Sector", "site_config_band", "tac", "band"] # ------------------------------- # Helper functions # ------------------------------- def check_bands(row: pd.Series) -> bool: """ Verify whether all configured site bands exist in ADJL created bands. """ site_bands = ( set(str(row["site_config_band"]).split("/")) if pd.notna(row["site_config_band"]) else set() ) adjl_bands = ( set(str(row["adjl_created_band"]).split("/")) if pd.notna(row["adjl_created_band"]) else set() ) return site_bands.issubset(adjl_bands) def missing_bands(row: pd.Series) -> str | None: """ Return missing bands from ADJL compared to site configuration. """ site_bands = ( set(str(row["site_config_band"]).split("/")) if pd.notna(row["site_config_band"]) else set() ) adjl_bands = ( set(str(row["adjl_created_band"]).split("/")) if pd.notna(row["adjl_created_band"]) else set() ) diff = site_bands - adjl_bands return ",".join(diff) if diff else None # ------------------------------- # Main Processing # ------------------------------- def process_adjl_data(file_path: str) -> list[pd.DataFrame]: """ Process ADJL data from an Excel file and return structured DataFrames. Args: file_path (str): Path to the input Excel file. Returns: list[pd.DataFrame]: [GSM_ADJL, WCDMA_ADJL, BTS, WCEL, LTE] """ # Read Excel sheets dfs = pd.read_excel( file_path, sheet_name=["ADJL", "BTS", "WCEL"], engine="calamine", skiprows=[0], ) # ------------------- BTS ------------------- df_bts = process_gsm_data(file_path)[BTS_COLUMNS] # ------------------- WCEL ------------------- df_wcel = process_wcdma_data(file_path)[WCEL_COLUMNS] # df_wcel["ID_WCEL"] = ( # df_wcel[["RNC", "WBTS", "WCEL"]].astype(str).agg("_".join, axis=1) # ) # ------------------- LTE ------------------- lte_fdd_df, lte_tdd_df = process_lte_data(file_path) lte_tdd_df = lte_tdd_df.rename(columns={"earfcn": "earfcnDL"}) lte_df = pd.concat([lte_fdd_df, lte_tdd_df], ignore_index=True)[LTE_COLUMNS_ADJL] # Config & TAC references lte_df_config = lte_df[LTE_COLUMNS_CONFIG] lte_df_global_tac = ( lte_df[["Code_Sector", "tac"]] .drop_duplicates(subset=["Code_Sector"], keep="first") .rename(columns={"tac": "global_tac"}) ) lte_df_band_tac = lte_df[LTE_COLUMNS_TAC].copy() lte_df_band_tac["Code_Sector_band"] = ( lte_df_band_tac[["Code_Sector", "band"]].astype(str).agg("_".join, axis=1) ) lte_df_band_tac = lte_df_band_tac.drop(columns=["Code_Sector"]) # ------------------- ADJL ------------------- df_adjl = dfs["ADJL"] df_adjl.columns = df_adjl.columns.str.replace(r"[ ]", "", regex=True) gsm_adjl_df = df_adjl[ADJL_GSM_COLUMNS] wcdma_adjl_df = df_adjl[ADJL_WCDMA_COLUMNS] # --- GSM ADJL --- # Filter invalid rows gsm_adjl_df = gsm_adjl_df[ gsm_adjl_df["BSC"].notna() & gsm_adjl_df["BCF"].notna() & gsm_adjl_df["BTS"].notna() ].reset_index(drop=True) # Build IDs and bands gsm_adjl_df["ID_BTS"] = ( gsm_adjl_df[["BSC", "BCF", "BTS"]].astype(str).agg("_".join, axis=1) ) gsm_adjl_df["ID_BTS"] = gsm_adjl_df["ID_BTS"].str.replace(".0", "", regex=False) gsm_adjl_df["adjl_band"] = gsm_adjl_df["earfcn"].map(UtilsVars.lte_band) # Merge BTS info gsm_adjl_df = pd.merge(gsm_adjl_df, df_bts, on="ID_BTS", how="left") # Aggregate ADJL band info gsm_adjl_df_band = adjl_band(gsm_adjl_df, "ID_BTS", "adjl_band") gsm_adjl_df = pd.merge(gsm_adjl_df, gsm_adjl_df_band, on="ID_BTS", how="left") # Build Code_Sector_band gsm_adjl_df["Code_Sector_band"] = ( gsm_adjl_df[["Code_Sector", "adjl_band"]].astype(str).agg("_".join, axis=1) ) # Merge LTE references gsm_adjl_df = gsm_adjl_df.merge(lte_df_config, on="Code_Sector", how="left") gsm_adjl_df = gsm_adjl_df.merge(lte_df_band_tac, on="Code_Sector_band", how="left") gsm_adjl_df = gsm_adjl_df.merge(lte_df_global_tac, on="Code_Sector", how="left") # Final TAC gsm_adjl_df["final_tac"] = gsm_adjl_df["tac"].fillna(gsm_adjl_df["global_tac"]) # Validations gsm_adjl_df["check_bands"] = gsm_adjl_df.apply(check_bands, axis=1) gsm_adjl_df["missing_bands"] = gsm_adjl_df.apply(missing_bands, axis=1) gsm_adjl_df["check_tac"] = gsm_adjl_df["lteAdjCellTac"] == gsm_adjl_df["final_tac"] # Drop intermediate columns gsm_adjl_df = gsm_adjl_df.drop( columns=["Code_Sector_band", "tac", "band", "global_tac"] ) # Mark existing BTS df_bts["adjl_exists"] = df_bts["ID_BTS"].isin(gsm_adjl_df["ID_BTS"]) # --- WCDMA ADJL --- # Filter invalid rows wcdma_adjl_df = wcdma_adjl_df[ wcdma_adjl_df["RNC"].notna() & wcdma_adjl_df["WBTS"].notna() & wcdma_adjl_df["WCEL"].notna() ].reset_index(drop=True) # Build IDs and bands wcdma_adjl_df["ID_WCEL"] = ( wcdma_adjl_df[["RNC", "WBTS", "WCEL"]].astype(str).agg("_".join, axis=1) ) wcdma_adjl_df["ID_WCEL"] = wcdma_adjl_df["ID_WCEL"].str.replace( ".0", "", regex=False ) wcdma_adjl_df["adjl_band"] = wcdma_adjl_df["AdjLEARFCN"].map(UtilsVars.lte_band) # Merge WCEL info wcdma_adjl_df = pd.merge(wcdma_adjl_df, df_wcel, on="ID_WCEL", how="left") # Aggregate ADJL band info wcdma_adjl_df_band = adjl_band(wcdma_adjl_df, "ID_WCEL", "adjl_band") wcdma_adjl_df = pd.merge( wcdma_adjl_df, wcdma_adjl_df_band, on="ID_WCEL", how="left" ) # Build Code_Sector_band wcdma_adjl_df["Code_Sector_band"] = ( wcdma_adjl_df[["Code_Sector", "adjl_band"]].astype(str).agg("_".join, axis=1) ) # Merge LTE references wcdma_adjl_df = wcdma_adjl_df.merge(lte_df_config, on="Code_Sector", how="left") # Validations wcdma_adjl_df["check_bands"] = wcdma_adjl_df.apply(check_bands, axis=1) wcdma_adjl_df["missing_bands"] = wcdma_adjl_df.apply(missing_bands, axis=1) # Mark existing WCEL df_wcel["adjl_exists"] = df_wcel["ID_WCEL"].isin(wcdma_adjl_df["ID_WCEL"]) return [gsm_adjl_df, wcdma_adjl_df, df_bts, df_wcel, lte_df] def process_adjl_data_to_excel(file_path: str) -> None: """ Process ADJL data and save the result into an Excel-like format via UtilsVars. """ adjl_dfs = process_adjl_data(file_path) UtilsVars.adjl_database = convert_dfs( adjl_dfs, ["GSM_ADJL", "WCDMA_ADJL", "BTS", "WCEL", "LTE"] )