|
|
from typing_extensions import override |
|
|
|
|
|
import torch |
|
|
|
|
|
from comfy_api.latest import ComfyExtension, io |
|
|
|
|
|
|
|
|
|
|
|
def optimized_scale(positive, negative): |
|
|
positive_flat = positive.reshape(positive.shape[0], -1) |
|
|
negative_flat = negative.reshape(negative.shape[0], -1) |
|
|
|
|
|
|
|
|
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) |
|
|
|
|
|
|
|
|
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 |
|
|
|
|
|
|
|
|
st_star = dot_product / squared_norm |
|
|
|
|
|
return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1)) |
|
|
|
|
|
class CFGZeroStar(io.ComfyNode): |
|
|
@classmethod |
|
|
def define_schema(cls) -> io.Schema: |
|
|
return io.Schema( |
|
|
node_id="CFGZeroStar", |
|
|
category="advanced/guidance", |
|
|
inputs=[ |
|
|
io.Model.Input("model"), |
|
|
], |
|
|
outputs=[io.Model.Output(display_name="patched_model")], |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
def execute(cls, model) -> io.NodeOutput: |
|
|
m = model.clone() |
|
|
def cfg_zero_star(args): |
|
|
guidance_scale = args['cond_scale'] |
|
|
x = args['input'] |
|
|
cond_p = args['cond_denoised'] |
|
|
uncond_p = args['uncond_denoised'] |
|
|
out = args["denoised"] |
|
|
alpha = optimized_scale(x - cond_p, x - uncond_p) |
|
|
|
|
|
return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha) |
|
|
m.set_model_sampler_post_cfg_function(cfg_zero_star) |
|
|
return io.NodeOutput(m) |
|
|
|
|
|
class CFGNorm(io.ComfyNode): |
|
|
@classmethod |
|
|
def define_schema(cls) -> io.Schema: |
|
|
return io.Schema( |
|
|
node_id="CFGNorm", |
|
|
category="advanced/guidance", |
|
|
inputs=[ |
|
|
io.Model.Input("model"), |
|
|
io.Float.Input("strength", default=1.0, min=0.0, max=100.0, step=0.01), |
|
|
], |
|
|
outputs=[io.Model.Output(display_name="patched_model")], |
|
|
is_experimental=True, |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
def execute(cls, model, strength) -> io.NodeOutput: |
|
|
m = model.clone() |
|
|
def cfg_norm(args): |
|
|
cond_p = args['cond_denoised'] |
|
|
pred_text_ = args["denoised"] |
|
|
|
|
|
norm_full_cond = torch.norm(cond_p, dim=1, keepdim=True) |
|
|
norm_pred_text = torch.norm(pred_text_, dim=1, keepdim=True) |
|
|
scale = (norm_full_cond / (norm_pred_text + 1e-8)).clamp(min=0.0, max=1.0) |
|
|
return pred_text_ * scale * strength |
|
|
|
|
|
m.set_model_sampler_post_cfg_function(cfg_norm) |
|
|
return io.NodeOutput(m) |
|
|
|
|
|
|
|
|
class CfgExtension(ComfyExtension): |
|
|
@override |
|
|
async def get_node_list(self) -> list[type[io.ComfyNode]]: |
|
|
return [ |
|
|
CFGZeroStar, |
|
|
CFGNorm, |
|
|
] |
|
|
|
|
|
|
|
|
async def comfy_entrypoint() -> CfgExtension: |
|
|
return CfgExtension() |
|
|
|