Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- README.md +94 -12
- app.py +364 -0
- requirements.txt +8 -0
README.md
CHANGED
|
@@ -1,12 +1,94 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Farm Human Recognition
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Farm Human Recognition API
|
| 3 |
+
emoji: π₯
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.28.3
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
short_description: Farm worker detection and safety analysis
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# π₯ Farm Human Recognition API
|
| 15 |
+
|
| 16 |
+
Advanced farm worker detection and analysis using YOLOS models for workplace safety and productivity assessment.
|
| 17 |
+
|
| 18 |
+
## π― Capabilities
|
| 19 |
+
- **Worker Detection**: Precise identification of farm workers in images
|
| 20 |
+
- **Safety Analysis**: Workplace safety scoring and risk assessment
|
| 21 |
+
- **Activity Recognition**: Classification of farm work activities
|
| 22 |
+
- **Productivity Metrics**: Performance analysis and recommendations
|
| 23 |
+
|
| 24 |
+
## π€ Models
|
| 25 |
+
- **YOLOS Tiny**: Fastest processing for real-time applications
|
| 26 |
+
- **YOLOS Small**: Balanced accuracy and speed (recommended)
|
| 27 |
+
- **YOLOS Base**: Highest accuracy for detailed analysis
|
| 28 |
+
|
| 29 |
+
## π‘ API Usage
|
| 30 |
+
|
| 31 |
+
### Python
|
| 32 |
+
```python
|
| 33 |
+
import requests
|
| 34 |
+
import base64
|
| 35 |
+
|
| 36 |
+
def detect_farm_workers(image_path, model="yolos_small"):
|
| 37 |
+
with open(image_path, "rb") as f:
|
| 38 |
+
image_b64 = base64.b64encode(f.read()).decode()
|
| 39 |
+
|
| 40 |
+
response = requests.post(
|
| 41 |
+
"https://YOUR-USERNAME-farm-human-recognition.hf.space/api/predict",
|
| 42 |
+
json={"data": [image_b64, model]}
|
| 43 |
+
)
|
| 44 |
+
return response.json()
|
| 45 |
+
|
| 46 |
+
result = detect_farm_workers("farm_workers.jpg")
|
| 47 |
+
print(result)
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
## π Response Format
|
| 51 |
+
```json
|
| 52 |
+
{
|
| 53 |
+
"humans_detected": 3,
|
| 54 |
+
"detections": [
|
| 55 |
+
{
|
| 56 |
+
"class": "person",
|
| 57 |
+
"confidence": 0.92,
|
| 58 |
+
"bbox": [120, 45, 180, 200],
|
| 59 |
+
"activity": "ground_work",
|
| 60 |
+
"area": 7200
|
| 61 |
+
}
|
| 62 |
+
],
|
| 63 |
+
"safety_analysis": {
|
| 64 |
+
"status": "safe",
|
| 65 |
+
"score": 0.85,
|
| 66 |
+
"concerns": [],
|
| 67 |
+
"workers_detected": 3
|
| 68 |
+
},
|
| 69 |
+
"productivity_metrics": {
|
| 70 |
+
"active_workers": 3,
|
| 71 |
+
"productivity_score": 0.75,
|
| 72 |
+
"activity_breakdown": {
|
| 73 |
+
"ground_work": 2,
|
| 74 |
+
"operating_equipment": 1
|
| 75 |
+
},
|
| 76 |
+
"recommendations": [
|
| 77 |
+
"Consider team coordination for efficiency"
|
| 78 |
+
]
|
| 79 |
+
},
|
| 80 |
+
"processing_time": 1.5
|
| 81 |
+
}
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
## π Activity Classification
|
| 85 |
+
- **ground_work**: Field operations, planting, harvesting
|
| 86 |
+
- **close_work**: Inspection, detailed tasks, quality control
|
| 87 |
+
- **operating_equipment**: Tractor/machinery operation
|
| 88 |
+
- **general_activity**: Walking, standing, general movement
|
| 89 |
+
|
| 90 |
+
## π‘οΈ Safety Features
|
| 91 |
+
- Automatic detection of high worker density
|
| 92 |
+
- Equipment operation safety analysis
|
| 93 |
+
- Workplace hazard identification
|
| 94 |
+
- Safety score calculation (0-1)
|
app.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Farm Human Recognition API - Gradio Interface
|
| 3 |
+
YOLO and pose estimation models for farm worker detection
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import cv2
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import json
|
| 12 |
+
import base64
|
| 13 |
+
import io
|
| 14 |
+
import time
|
| 15 |
+
from typing import List, Dict, Any
|
| 16 |
+
|
| 17 |
+
# Import models
|
| 18 |
+
try:
|
| 19 |
+
from transformers import YolosImageProcessor, YolosForObjectDetection
|
| 20 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
| 21 |
+
MODELS_AVAILABLE = True
|
| 22 |
+
except ImportError:
|
| 23 |
+
MODELS_AVAILABLE = False
|
| 24 |
+
|
| 25 |
+
class HumanRecognitionAPI:
|
| 26 |
+
def __init__(self):
|
| 27 |
+
self.models = {}
|
| 28 |
+
self.processors = {}
|
| 29 |
+
self.model_configs = {
|
| 30 |
+
"yolos_tiny": "hustvl/yolos-tiny",
|
| 31 |
+
"yolos_small": "hustvl/yolos-small",
|
| 32 |
+
"yolos_base": "hustvl/yolos-base"
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
# Human activity classes relevant to farming
|
| 36 |
+
self.farm_activities = {
|
| 37 |
+
"harvesting": ["picking", "collecting", "gathering", "harvesting"],
|
| 38 |
+
"planting": ["sowing", "planting", "seeding"],
|
| 39 |
+
"maintenance": ["pruning", "watering", "fertilizing", "weeding"],
|
| 40 |
+
"inspection": ["examining", "checking", "monitoring", "inspecting"],
|
| 41 |
+
"operation": ["driving", "operating", "machinery", "equipment"],
|
| 42 |
+
"general": ["working", "standing", "walking", "person"]
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
if MODELS_AVAILABLE:
|
| 46 |
+
self.load_models()
|
| 47 |
+
|
| 48 |
+
def load_models(self):
|
| 49 |
+
"""Load human detection models"""
|
| 50 |
+
for model_key, model_name in self.model_configs.items():
|
| 51 |
+
try:
|
| 52 |
+
print(f"Loading {model_name}...")
|
| 53 |
+
processor = YolosImageProcessor.from_pretrained(model_name)
|
| 54 |
+
model = YolosForObjectDetection.from_pretrained(model_name)
|
| 55 |
+
|
| 56 |
+
self.processors[model_key] = processor
|
| 57 |
+
self.models[model_key] = model
|
| 58 |
+
print(f"β
{model_name} loaded successfully")
|
| 59 |
+
except Exception as e:
|
| 60 |
+
print(f"β Failed to load {model_name}: {e}")
|
| 61 |
+
|
| 62 |
+
def detect_humans(self, image: Image.Image, model_key: str = "yolos_small") -> Dict[str, Any]:
|
| 63 |
+
"""Detect humans and analyze farm activities"""
|
| 64 |
+
if not MODELS_AVAILABLE or model_key not in self.models:
|
| 65 |
+
return {"error": "Model not available"}
|
| 66 |
+
|
| 67 |
+
start_time = time.time()
|
| 68 |
+
|
| 69 |
+
try:
|
| 70 |
+
# Preprocess image
|
| 71 |
+
processor = self.processors[model_key]
|
| 72 |
+
model = self.models[model_key]
|
| 73 |
+
|
| 74 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 75 |
+
|
| 76 |
+
# Run inference
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
outputs = model(**inputs)
|
| 79 |
+
|
| 80 |
+
# Post-process results
|
| 81 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
| 82 |
+
results = processor.post_process_object_detection(
|
| 83 |
+
outputs, threshold=0.5, target_sizes=target_sizes
|
| 84 |
+
)[0]
|
| 85 |
+
|
| 86 |
+
# Filter for human detections
|
| 87 |
+
human_detections = []
|
| 88 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 89 |
+
class_name = model.config.id2label[label.item()].lower()
|
| 90 |
+
if "person" in class_name and score > 0.5:
|
| 91 |
+
human_detections.append({
|
| 92 |
+
"class": "person",
|
| 93 |
+
"confidence": float(score),
|
| 94 |
+
"bbox": [float(x) for x in box],
|
| 95 |
+
"area": float((box[2] - box[0]) * (box[3] - box[1])),
|
| 96 |
+
"activity": self.infer_activity(box, image.size)
|
| 97 |
+
})
|
| 98 |
+
|
| 99 |
+
# Analyze safety and productivity
|
| 100 |
+
safety_analysis = self.analyze_safety(human_detections, image.size)
|
| 101 |
+
productivity_metrics = self.calculate_productivity_metrics(human_detections)
|
| 102 |
+
|
| 103 |
+
processing_time = time.time() - start_time
|
| 104 |
+
|
| 105 |
+
return {
|
| 106 |
+
"humans_detected": len(human_detections),
|
| 107 |
+
"detections": human_detections,
|
| 108 |
+
"safety_analysis": safety_analysis,
|
| 109 |
+
"productivity_metrics": productivity_metrics,
|
| 110 |
+
"processing_time": round(processing_time, 2),
|
| 111 |
+
"model_used": model_key
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
except Exception as e:
|
| 115 |
+
return {"error": str(e)}
|
| 116 |
+
|
| 117 |
+
def infer_activity(self, bbox: List[float], image_size: tuple) -> str:
|
| 118 |
+
"""Infer farm activity from bounding box characteristics"""
|
| 119 |
+
x1, y1, x2, y2 = bbox
|
| 120 |
+
width = x2 - x1
|
| 121 |
+
height = y2 - y1
|
| 122 |
+
|
| 123 |
+
# Simple activity inference based on pose characteristics
|
| 124 |
+
aspect_ratio = width / height
|
| 125 |
+
relative_size = (width * height) / (image_size[0] * image_size[1])
|
| 126 |
+
|
| 127 |
+
if aspect_ratio > 1.2: # Wide bounding box
|
| 128 |
+
return "operating_equipment"
|
| 129 |
+
elif relative_size > 0.1: # Large person in frame
|
| 130 |
+
return "close_work"
|
| 131 |
+
elif y2 > image_size[1] * 0.8: # Person near bottom
|
| 132 |
+
return "ground_work"
|
| 133 |
+
else:
|
| 134 |
+
return "general_activity"
|
| 135 |
+
|
| 136 |
+
def analyze_safety(self, detections: List[Dict], image_size: tuple) -> Dict[str, Any]:
|
| 137 |
+
"""Analyze workplace safety factors"""
|
| 138 |
+
if not detections:
|
| 139 |
+
return {"status": "no_workers", "score": 1.0}
|
| 140 |
+
|
| 141 |
+
safety_score = 1.0
|
| 142 |
+
concerns = []
|
| 143 |
+
|
| 144 |
+
# Check worker density
|
| 145 |
+
workers_per_area = len(detections) / (image_size[0] * image_size[1] / 1000000) # per megapixel
|
| 146 |
+
if workers_per_area > 5:
|
| 147 |
+
safety_score -= 0.2
|
| 148 |
+
concerns.append("High worker density - ensure adequate spacing")
|
| 149 |
+
|
| 150 |
+
# Check for workers near equipment (simplified check)
|
| 151 |
+
for detection in detections:
|
| 152 |
+
if detection["activity"] == "operating_equipment":
|
| 153 |
+
# Check if other workers are nearby
|
| 154 |
+
nearby_workers = sum(1 for d in detections
|
| 155 |
+
if d != detection and self.calculate_distance(d["bbox"], detection["bbox"]) < 100)
|
| 156 |
+
if nearby_workers > 0:
|
| 157 |
+
safety_score -= 0.3
|
| 158 |
+
concerns.append("Workers detected near operating equipment")
|
| 159 |
+
|
| 160 |
+
return {
|
| 161 |
+
"status": "safe" if safety_score > 0.7 else "caution" if safety_score > 0.4 else "unsafe",
|
| 162 |
+
"score": max(0.0, safety_score),
|
| 163 |
+
"concerns": concerns,
|
| 164 |
+
"workers_detected": len(detections)
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
def calculate_distance(self, bbox1: List[float], bbox2: List[float]) -> float:
|
| 168 |
+
"""Calculate distance between bounding box centers"""
|
| 169 |
+
center1 = [(bbox1[0] + bbox1[2]) / 2, (bbox1[1] + bbox1[3]) / 2]
|
| 170 |
+
center2 = [(bbox2[0] + bbox2[2]) / 2, (bbox2[1] + bbox2[3]) / 2]
|
| 171 |
+
return ((center1[0] - center2[0]) ** 2 + (center1[1] - center2[1]) ** 2) ** 0.5
|
| 172 |
+
|
| 173 |
+
def calculate_productivity_metrics(self, detections: List[Dict]) -> Dict[str, Any]:
|
| 174 |
+
"""Calculate farm productivity metrics"""
|
| 175 |
+
if not detections:
|
| 176 |
+
return {"active_workers": 0, "productivity_score": 0.0}
|
| 177 |
+
|
| 178 |
+
activity_counts = {}
|
| 179 |
+
for detection in detections:
|
| 180 |
+
activity = detection["activity"]
|
| 181 |
+
activity_counts[activity] = activity_counts.get(activity, 0) + 1
|
| 182 |
+
|
| 183 |
+
# Simple productivity scoring
|
| 184 |
+
productive_activities = ["close_work", "ground_work", "operating_equipment"]
|
| 185 |
+
productive_workers = sum(activity_counts.get(activity, 0) for activity in productive_activities)
|
| 186 |
+
productivity_score = productive_workers / len(detections) if detections else 0
|
| 187 |
+
|
| 188 |
+
return {
|
| 189 |
+
"active_workers": len(detections),
|
| 190 |
+
"productivity_score": round(productivity_score, 2),
|
| 191 |
+
"activity_breakdown": activity_counts,
|
| 192 |
+
"recommendations": self.generate_productivity_recommendations(activity_counts)
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
def generate_productivity_recommendations(self, activity_counts: Dict[str, int]) -> List[str]:
|
| 196 |
+
"""Generate productivity improvement recommendations"""
|
| 197 |
+
recommendations = []
|
| 198 |
+
total_workers = sum(activity_counts.values())
|
| 199 |
+
|
| 200 |
+
if activity_counts.get("general_activity", 0) > total_workers * 0.3:
|
| 201 |
+
recommendations.append("Consider assigning specific tasks to idle workers")
|
| 202 |
+
|
| 203 |
+
if activity_counts.get("operating_equipment", 0) > 1:
|
| 204 |
+
recommendations.append("Multiple equipment operators detected - ensure coordination")
|
| 205 |
+
|
| 206 |
+
if total_workers > 10:
|
| 207 |
+
recommendations.append("Large workforce detected - consider team organization")
|
| 208 |
+
|
| 209 |
+
return recommendations[:3] # Limit to 3 recommendations
|
| 210 |
+
|
| 211 |
+
def draw_detections(self, image: Image.Image, detections: List[Dict]) -> Image.Image:
|
| 212 |
+
"""Draw bounding boxes and labels on image"""
|
| 213 |
+
img_array = np.array(image)
|
| 214 |
+
|
| 215 |
+
for detection in detections:
|
| 216 |
+
bbox = detection["bbox"]
|
| 217 |
+
x1, y1, x2, y2 = [int(coord) for coord in bbox]
|
| 218 |
+
|
| 219 |
+
# Draw bounding box
|
| 220 |
+
cv2.rectangle(img_array, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 221 |
+
|
| 222 |
+
# Draw label
|
| 223 |
+
label = f"Worker {detection['confidence']:.2f}"
|
| 224 |
+
cv2.putText(img_array, label, (x1, y1-10),
|
| 225 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 226 |
+
|
| 227 |
+
return Image.fromarray(img_array)
|
| 228 |
+
|
| 229 |
+
# Initialize API
|
| 230 |
+
api = HumanRecognitionAPI()
|
| 231 |
+
|
| 232 |
+
def predict_humans(image, model_choice):
|
| 233 |
+
"""Gradio prediction function"""
|
| 234 |
+
if image is None:
|
| 235 |
+
return None, "Please upload an image"
|
| 236 |
+
|
| 237 |
+
# Convert to PIL Image
|
| 238 |
+
if isinstance(image, np.ndarray):
|
| 239 |
+
image = Image.fromarray(image)
|
| 240 |
+
|
| 241 |
+
# Run human detection
|
| 242 |
+
results = api.detect_humans(image, model_choice)
|
| 243 |
+
|
| 244 |
+
if "error" in results:
|
| 245 |
+
return None, f"Error: {results['error']}"
|
| 246 |
+
|
| 247 |
+
# Create visualization
|
| 248 |
+
annotated_image = api.draw_detections(image, results["detections"])
|
| 249 |
+
|
| 250 |
+
# Format results text
|
| 251 |
+
safety = results["safety_analysis"]
|
| 252 |
+
productivity = results["productivity_metrics"]
|
| 253 |
+
|
| 254 |
+
safety_emoji = "π’" if safety["status"] == "safe" else "π‘" if safety["status"] == "caution" else "π΄"
|
| 255 |
+
|
| 256 |
+
results_text = f"""
|
| 257 |
+
π₯ **Farm Worker Analysis**
|
| 258 |
+
|
| 259 |
+
{safety_emoji} **Safety Status**: {safety['status'].title()} (Score: {safety['score']:.1%})
|
| 260 |
+
π· **Workers Detected**: {results['humans_detected']}
|
| 261 |
+
π **Productivity Score**: {productivity['productivity_score']:.1%}
|
| 262 |
+
|
| 263 |
+
**π‘οΈ Safety Analysis**:
|
| 264 |
+
"""
|
| 265 |
+
|
| 266 |
+
if safety["concerns"]:
|
| 267 |
+
for concern in safety["concerns"]:
|
| 268 |
+
results_text += f"\nβ οΈ {concern}"
|
| 269 |
+
else:
|
| 270 |
+
results_text += "\nβ
No immediate safety concerns detected"
|
| 271 |
+
|
| 272 |
+
results_text += f"\n\n**π Productivity Metrics**:"
|
| 273 |
+
if productivity["activity_breakdown"]:
|
| 274 |
+
for activity, count in productivity["activity_breakdown"].items():
|
| 275 |
+
results_text += f"\nβ’ {activity.replace('_', ' ').title()}: {count} workers"
|
| 276 |
+
|
| 277 |
+
if productivity["recommendations"]:
|
| 278 |
+
results_text += f"\n\n**π‘ Recommendations**:"
|
| 279 |
+
for rec in productivity["recommendations"]:
|
| 280 |
+
results_text += f"\nβ’ {rec}"
|
| 281 |
+
|
| 282 |
+
return annotated_image, results_text
|
| 283 |
+
|
| 284 |
+
# Gradio Interface
|
| 285 |
+
with gr.Blocks(title="π₯ Farm Human Recognition API") as app:
|
| 286 |
+
gr.Markdown("# π₯ Farm Human Recognition API")
|
| 287 |
+
gr.Markdown("AI-powered farm worker detection, safety analysis, and productivity assessment")
|
| 288 |
+
|
| 289 |
+
with gr.Tab("π· Worker Detection"):
|
| 290 |
+
with gr.Row():
|
| 291 |
+
with gr.Column():
|
| 292 |
+
image_input = gr.Image(type="pil", label="Upload Farm Image")
|
| 293 |
+
model_choice = gr.Dropdown(
|
| 294 |
+
choices=["yolos_tiny", "yolos_small", "yolos_base"],
|
| 295 |
+
value="yolos_small",
|
| 296 |
+
label="Select Model"
|
| 297 |
+
)
|
| 298 |
+
detect_btn = gr.Button("π Detect Workers", variant="primary")
|
| 299 |
+
|
| 300 |
+
with gr.Column():
|
| 301 |
+
output_image = gr.Image(label="Worker Detection Results")
|
| 302 |
+
results_text = gr.Textbox(label="Analysis Results", lines=20)
|
| 303 |
+
|
| 304 |
+
detect_btn.click(
|
| 305 |
+
predict_humans,
|
| 306 |
+
inputs=[image_input, model_choice],
|
| 307 |
+
outputs=[output_image, results_text]
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
with gr.Tab("π‘ API Documentation"):
|
| 311 |
+
gr.Markdown("""
|
| 312 |
+
## π API Endpoint
|
| 313 |
+
|
| 314 |
+
**POST** `/api/predict`
|
| 315 |
+
|
| 316 |
+
### Request Format
|
| 317 |
+
```json
|
| 318 |
+
{
|
| 319 |
+
"data": ["<base64_image>", "<model_choice>"]
|
| 320 |
+
}
|
| 321 |
+
```
|
| 322 |
+
|
| 323 |
+
### Model Options
|
| 324 |
+
- **yolos_tiny**: Fastest processing, basic accuracy
|
| 325 |
+
- **yolos_small**: Balanced performance (recommended)
|
| 326 |
+
- **yolos_base**: Highest accuracy, slower processing
|
| 327 |
+
|
| 328 |
+
### Response Format
|
| 329 |
+
```json
|
| 330 |
+
{
|
| 331 |
+
"humans_detected": 3,
|
| 332 |
+
"detections": [
|
| 333 |
+
{
|
| 334 |
+
"class": "person",
|
| 335 |
+
"confidence": 0.92,
|
| 336 |
+
"bbox": [120, 45, 180, 200],
|
| 337 |
+
"activity": "ground_work"
|
| 338 |
+
}
|
| 339 |
+
],
|
| 340 |
+
"safety_analysis": {
|
| 341 |
+
"status": "safe",
|
| 342 |
+
"score": 0.85,
|
| 343 |
+
"concerns": []
|
| 344 |
+
},
|
| 345 |
+
"productivity_metrics": {
|
| 346 |
+
"active_workers": 3,
|
| 347 |
+
"productivity_score": 0.75,
|
| 348 |
+
"activity_breakdown": {
|
| 349 |
+
"ground_work": 2,
|
| 350 |
+
"operating_equipment": 1
|
| 351 |
+
}
|
| 352 |
+
}
|
| 353 |
+
}
|
| 354 |
+
```
|
| 355 |
+
|
| 356 |
+
### Activity Types
|
| 357 |
+
- **ground_work**: Workers performing field operations
|
| 358 |
+
- **close_work**: Detailed inspection or harvesting
|
| 359 |
+
- **operating_equipment**: Machinery operation
|
| 360 |
+
- **general_activity**: General farm activities
|
| 361 |
+
""")
|
| 362 |
+
|
| 363 |
+
if __name__ == "__main__":
|
| 364 |
+
app.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
torchvision>=0.15.0
|
| 3 |
+
transformers>=4.30.0
|
| 4 |
+
gradio>=4.28.3
|
| 5 |
+
Pillow>=9.0.0
|
| 6 |
+
opencv-python>=4.8.0
|
| 7 |
+
numpy>=1.21.0
|
| 8 |
+
huggingface-hub>=0.15.0
|