Spaces:
Build error
Build error
| import streamlit as st | |
| import pandas as pd | |
| import requests | |
| # Set the title of the Streamlit app | |
| st.title("SuperKart Store Sales Prediction") | |
| # Section for online prediction | |
| st.subheader("Online Prediction") | |
| # Collect user input for store/product features | |
| product_weight = st.number_input("Product Weight", min_value=0.0, value=1.0) | |
| product_allocated_area = st.number_input("Product Allocated Area", min_value=0.0, value=10.0) | |
| product_mrp = st.number_input("Product MRP", min_value=0.0, value=50.0) | |
| store_establishment_year = st.number_input("Store Establishment Year", min_value=1900, max_value=2025, value=2015) | |
| product_sugar_content = st.selectbox("Product Sugar Content", ["Low", "Medium", "High"]) | |
| product_type = st.selectbox("Product Type", ["Dairy", "Beverages", "Snacks", "Others"]) | |
| store_size = st.selectbox("Store Size", ["Small", "Medium", "High"]) | |
| store_location_city_type = st.selectbox("Store Location City Type", ["Tier 1", "Tier 2", "Tier 3"]) | |
| store_type = st.selectbox("Store Type", ["Type 1", "Type 2", "Type 3", "Type 4"]) | |
| store_id = st.text_input("Store Id", "S001") | |
| # Feature engineering for Store_Age | |
| store_age = 2025 - store_establishment_year | |
| # Convert user input into a DataFrame | |
| input_data = pd.DataFrame([{ | |
| 'Product_Weight': product_weight, | |
| 'Product_Allocated_Area': product_allocated_area, | |
| 'Product_MRP': product_mrp, | |
| 'Store_Age': store_age, | |
| 'Product_Sugar_Content': product_sugar_content, | |
| 'Product_Type': product_type, | |
| 'Store_Size': store_size, | |
| 'Store_Location_City_Type': store_location_city_type, | |
| 'Store_Type': store_type, | |
| 'Store_Id': store_id | |
| }]) | |
| # Make prediction when the "Predict" button is clicked | |
| if st.button("Predict"): | |
| response = requests.post( | |
| "https://Disha252001-SuperKart-Frontend.hf.space/v1/sale", | |
| json=input_data.to_dict(orient='records')[0] | |
| ) | |
| if response.status_code == 200: | |
| prediction = response.json()['Predicted Store Sales'] | |
| st.success(f"Predicted Store Sales: {prediction}") | |
| else: | |
| st.error("Error making prediction.") | |
| # Section for batch prediction | |
| st.subheader("Batch Prediction") | |
| # Allow users to upload a CSV file for batch prediction | |
| uploaded_file = st.file_uploader("Upload CSV file for batch prediction", type=["csv"]) | |
| # Make batch prediction when the "Predict Batch" button is clicked | |
| if uploaded_file is not None: | |
| if st.button("Predict Batch"): | |
| response = requests.post( | |
| "https://Disha252001-SuperKart-Frontend.hf.space/v1/salebatch", | |
| files={"file": uploaded_file} | |
| ) | |
| if response.status_code == 200: | |
| predictions = response.json() | |
| st.success("Batch predictions completed!") | |
| st.write(predictions) # Display the predictions | |
| else: | |
| st.error("Error making batch prediction.") | |