refactor scripts/finetune.py into new cli modules (#550)
Browse files* refactor scripts/finetune.py into new cli modules
* continue to support scripts/finetune.py
* update readme with updated cli commands
* Update scripts/finetune.py
Co-authored-by: NanoCode012 <[email protected]>
---------
Co-authored-by: NanoCode012 <[email protected]>
- README.md +11 -11
- scripts/finetune.py +18 -253
- src/axolotl/cli/__init__.py +249 -0
- src/axolotl/cli/inference.py +26 -0
- src/axolotl/cli/merge_lora.py +26 -0
- src/axolotl/cli/shard.py +41 -0
- src/axolotl/cli/train.py +35 -0
README.md
CHANGED
|
@@ -76,11 +76,11 @@ pip3 install -e .[flash-attn]
|
|
| 76 |
pip3 install -U git+https://github.com/huggingface/peft.git
|
| 77 |
|
| 78 |
# finetune lora
|
| 79 |
-
accelerate launch
|
| 80 |
|
| 81 |
# inference
|
| 82 |
-
accelerate launch
|
| 83 |
-
--
|
| 84 |
```
|
| 85 |
|
| 86 |
## Installation
|
|
@@ -674,14 +674,14 @@ strict:
|
|
| 674 |
|
| 675 |
Run
|
| 676 |
```bash
|
| 677 |
-
accelerate launch
|
| 678 |
```
|
| 679 |
|
| 680 |
#### Multi-GPU
|
| 681 |
|
| 682 |
You can optionally pre-tokenize dataset with the following before finetuning:
|
| 683 |
```bash
|
| 684 |
-
CUDA_VISIBLE_DEVICES="" accelerate
|
| 685 |
```
|
| 686 |
|
| 687 |
##### Config
|
|
@@ -720,16 +720,16 @@ Pass the appropriate flag to the train command:
|
|
| 720 |
|
| 721 |
- Pretrained LORA:
|
| 722 |
```bash
|
| 723 |
-
|
| 724 |
```
|
| 725 |
- Full weights finetune:
|
| 726 |
```bash
|
| 727 |
-
|
| 728 |
```
|
| 729 |
- Full weights finetune w/ a prompt from a text file:
|
| 730 |
```bash
|
| 731 |
-
cat /tmp/prompt.txt | python
|
| 732 |
-
--base_model="./completed-model" --
|
| 733 |
```
|
| 734 |
|
| 735 |
### Merge LORA to base
|
|
@@ -737,13 +737,13 @@ Pass the appropriate flag to the train command:
|
|
| 737 |
Add below flag to train command above
|
| 738 |
|
| 739 |
```bash
|
| 740 |
-
|
| 741 |
```
|
| 742 |
|
| 743 |
If you run out of CUDA memory, you can try to merge in system RAM with
|
| 744 |
|
| 745 |
```bash
|
| 746 |
-
CUDA_VISIBLE_DEVICES="" python3
|
| 747 |
```
|
| 748 |
|
| 749 |
## Common Errors 🧰
|
|
|
|
| 76 |
pip3 install -U git+https://github.com/huggingface/peft.git
|
| 77 |
|
| 78 |
# finetune lora
|
| 79 |
+
accelerate launch -m axolotl.cli.train examples/openllama-3b/lora.yml
|
| 80 |
|
| 81 |
# inference
|
| 82 |
+
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
|
| 83 |
+
--lora_model_dir="./lora-out"
|
| 84 |
```
|
| 85 |
|
| 86 |
## Installation
|
|
|
|
| 674 |
|
| 675 |
Run
|
| 676 |
```bash
|
| 677 |
+
accelerate launch -m axolotl.cli.train your_config.yml
|
| 678 |
```
|
| 679 |
|
| 680 |
#### Multi-GPU
|
| 681 |
|
| 682 |
You can optionally pre-tokenize dataset with the following before finetuning:
|
| 683 |
```bash
|
| 684 |
+
CUDA_VISIBLE_DEVICES="" accelerate launch -m axolotl.cli.train your_config.yml --prepare_ds_only
|
| 685 |
```
|
| 686 |
|
| 687 |
##### Config
|
|
|
|
| 720 |
|
| 721 |
- Pretrained LORA:
|
| 722 |
```bash
|
| 723 |
+
python -m axolotl.cli.inference examples/your_config.yml --lora_model_dir="./lora-output-dir"
|
| 724 |
```
|
| 725 |
- Full weights finetune:
|
| 726 |
```bash
|
| 727 |
+
python -m axolotl.cli.inference examples/your_config.yml --base_model="./completed-model"
|
| 728 |
```
|
| 729 |
- Full weights finetune w/ a prompt from a text file:
|
| 730 |
```bash
|
| 731 |
+
cat /tmp/prompt.txt | python -m axolotl.cli.inference examples/your_config.yml \
|
| 732 |
+
--base_model="./completed-model" --prompter=None --load_in_8bit=True
|
| 733 |
```
|
| 734 |
|
| 735 |
### Merge LORA to base
|
|
|
|
| 737 |
Add below flag to train command above
|
| 738 |
|
| 739 |
```bash
|
| 740 |
+
python3 -m axolotl.cli.merge_lora examples/your_config.yml --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False
|
| 741 |
```
|
| 742 |
|
| 743 |
If you run out of CUDA memory, you can try to merge in system RAM with
|
| 744 |
|
| 745 |
```bash
|
| 746 |
+
CUDA_VISIBLE_DEVICES="" python3 -m axolotl.cli.merge_lora ...
|
| 747 |
```
|
| 748 |
|
| 749 |
## Common Errors 🧰
|
scripts/finetune.py
CHANGED
|
@@ -1,269 +1,34 @@
|
|
| 1 |
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
|
| 2 |
-
|
| 3 |
-
import importlib
|
| 4 |
import logging
|
| 5 |
-
import os
|
| 6 |
-
import random
|
| 7 |
-
import sys
|
| 8 |
from pathlib import Path
|
| 9 |
-
from typing import Any, Dict, List, Optional, Union
|
| 10 |
|
| 11 |
import fire
|
| 12 |
-
import torch
|
| 13 |
import transformers
|
| 14 |
-
import yaml
|
| 15 |
-
|
| 16 |
-
# add src to the pythonpath so we don't need to pip install this
|
| 17 |
-
from accelerate.commands.config import config_args
|
| 18 |
-
from art import text2art
|
| 19 |
-
from transformers import GenerationConfig, TextStreamer
|
| 20 |
-
|
| 21 |
-
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer
|
| 22 |
-
from axolotl.logging_config import configure_logging
|
| 23 |
-
from axolotl.train import TrainDatasetMeta, train
|
| 24 |
-
from axolotl.utils.config import normalize_config, validate_config
|
| 25 |
-
from axolotl.utils.data import prepare_dataset
|
| 26 |
-
from axolotl.utils.dict import DictDefault
|
| 27 |
-
from axolotl.utils.distributed import is_main_process
|
| 28 |
-
from axolotl.utils.models import load_tokenizer
|
| 29 |
-
from axolotl.utils.tokenization import check_dataset_labels
|
| 30 |
-
from axolotl.utils.wandb_ import setup_wandb_env_vars
|
| 31 |
-
|
| 32 |
-
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
| 33 |
-
src_dir = os.path.join(project_root, "src")
|
| 34 |
-
sys.path.insert(0, src_dir)
|
| 35 |
-
|
| 36 |
-
configure_logging()
|
| 37 |
-
LOG = logging.getLogger("axolotl.scripts")
|
| 38 |
-
|
| 39 |
-
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def print_axolotl_text_art(suffix=None):
|
| 43 |
-
font = "nancyj"
|
| 44 |
-
ascii_text = " axolotl"
|
| 45 |
-
if suffix:
|
| 46 |
-
ascii_text += f" x {suffix}"
|
| 47 |
-
ascii_art = text2art(" axolotl", font=font)
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
def do_merge_lora(
|
| 63 |
-
*,
|
| 64 |
-
cfg: DictDefault,
|
| 65 |
-
cli_args: TrainerCliArgs,
|
| 66 |
-
):
|
| 67 |
-
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
| 68 |
-
safe_serialization = cfg.save_safetensors is True
|
| 69 |
-
|
| 70 |
-
LOG.info("running merge of LoRA with base model")
|
| 71 |
-
model = model.merge_and_unload()
|
| 72 |
-
model.to(dtype=torch.float16)
|
| 73 |
-
|
| 74 |
-
if cfg.local_rank == 0:
|
| 75 |
-
LOG.info("saving merged model")
|
| 76 |
-
model.save_pretrained(
|
| 77 |
-
str(Path(cfg.output_dir) / "merged"),
|
| 78 |
-
safe_serialization=safe_serialization,
|
| 79 |
-
)
|
| 80 |
-
tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged"))
|
| 81 |
|
|
|
|
| 82 |
|
| 83 |
-
def shard(
|
| 84 |
-
*,
|
| 85 |
-
cfg: DictDefault,
|
| 86 |
-
cli_args: TrainerCliArgs,
|
| 87 |
-
):
|
| 88 |
-
model, _ = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
| 89 |
-
safe_serialization = cfg.save_safetensors is True
|
| 90 |
-
LOG.debug("Re-saving model w/ sharding")
|
| 91 |
-
model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization)
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
| 100 |
-
prompter = cli_args.prompter
|
| 101 |
-
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
|
| 102 |
-
|
| 103 |
-
for token, symbol in default_tokens.items():
|
| 104 |
-
# If the token isn't already specified in the config, add it
|
| 105 |
-
if not (cfg.special_tokens and token in cfg.special_tokens):
|
| 106 |
-
tokenizer.add_special_tokens({token: symbol})
|
| 107 |
-
|
| 108 |
-
prompter_module = None
|
| 109 |
-
if prompter:
|
| 110 |
-
prompter_module = getattr(
|
| 111 |
-
importlib.import_module("axolotl.prompters"), prompter
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
if cfg.landmark_attention:
|
| 115 |
-
from axolotl.monkeypatch.llama_landmark_attn import set_model_mem_id
|
| 116 |
-
|
| 117 |
-
set_model_mem_id(model, tokenizer)
|
| 118 |
-
model.set_mem_cache_args(
|
| 119 |
-
max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
model = model.to(cfg.device)
|
| 123 |
-
|
| 124 |
-
while True:
|
| 125 |
-
print("=" * 80)
|
| 126 |
-
# support for multiline inputs
|
| 127 |
-
instruction = get_multi_line_input()
|
| 128 |
-
if not instruction:
|
| 129 |
-
return
|
| 130 |
-
if prompter_module:
|
| 131 |
-
prompt: str = next(
|
| 132 |
-
prompter_module().build_prompt(instruction=instruction.strip("\n"))
|
| 133 |
-
)
|
| 134 |
-
else:
|
| 135 |
-
prompt = instruction.strip()
|
| 136 |
-
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
|
| 137 |
-
|
| 138 |
-
print("=" * 40)
|
| 139 |
-
model.eval()
|
| 140 |
-
with torch.no_grad():
|
| 141 |
-
generation_config = GenerationConfig(
|
| 142 |
-
repetition_penalty=1.1,
|
| 143 |
-
max_new_tokens=1024,
|
| 144 |
-
temperature=0.9,
|
| 145 |
-
top_p=0.95,
|
| 146 |
-
top_k=40,
|
| 147 |
-
bos_token_id=tokenizer.bos_token_id,
|
| 148 |
-
eos_token_id=tokenizer.eos_token_id,
|
| 149 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 150 |
-
do_sample=True,
|
| 151 |
-
use_cache=True,
|
| 152 |
-
return_dict_in_generate=True,
|
| 153 |
-
output_attentions=False,
|
| 154 |
-
output_hidden_states=False,
|
| 155 |
-
output_scores=False,
|
| 156 |
-
)
|
| 157 |
-
streamer = TextStreamer(tokenizer)
|
| 158 |
-
generated = model.generate(
|
| 159 |
-
inputs=batch["input_ids"].to(cfg.device),
|
| 160 |
-
generation_config=generation_config,
|
| 161 |
-
streamer=streamer,
|
| 162 |
)
|
| 163 |
-
print("=" * 40)
|
| 164 |
-
print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
def choose_config(path: Path):
|
| 168 |
-
yaml_files = list(path.glob("*.yml"))
|
| 169 |
-
|
| 170 |
-
if not yaml_files:
|
| 171 |
-
raise ValueError(
|
| 172 |
-
"No YAML config files found in the specified directory. Are you using a .yml extension?"
|
| 173 |
)
|
| 174 |
-
|
| 175 |
-
if len(yaml_files) == 1:
|
| 176 |
-
print(f"Using default YAML file '{yaml_files[0]}'")
|
| 177 |
-
return yaml_files[0]
|
| 178 |
-
|
| 179 |
-
print("Choose a YAML file:")
|
| 180 |
-
for idx, file in enumerate(yaml_files):
|
| 181 |
-
print(f"{idx + 1}. {file}")
|
| 182 |
-
|
| 183 |
-
chosen_file = None
|
| 184 |
-
while chosen_file is None:
|
| 185 |
-
try:
|
| 186 |
-
choice = int(input("Enter the number of your choice: "))
|
| 187 |
-
if 1 <= choice <= len(yaml_files):
|
| 188 |
-
chosen_file = yaml_files[choice - 1]
|
| 189 |
-
else:
|
| 190 |
-
print("Invalid choice. Please choose a number from the list.")
|
| 191 |
-
except ValueError:
|
| 192 |
-
print("Invalid input. Please enter a number.")
|
| 193 |
-
|
| 194 |
-
return chosen_file
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool:
|
| 198 |
-
return not any(el in list2 for el in list1)
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
def load_cfg(config: Path = Path("examples/"), **kwargs):
|
| 202 |
-
if Path(config).is_dir():
|
| 203 |
-
config = choose_config(config)
|
| 204 |
-
|
| 205 |
-
# load the config from the yaml file
|
| 206 |
-
with open(config, encoding="utf-8") as file:
|
| 207 |
-
cfg: DictDefault = DictDefault(yaml.safe_load(file))
|
| 208 |
-
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
| 209 |
-
# then overwrite the value
|
| 210 |
-
cfg_keys = cfg.keys()
|
| 211 |
-
for k, _ in kwargs.items():
|
| 212 |
-
# if not strict, allow writing to cfg even if it's not in the yml already
|
| 213 |
-
if k in cfg_keys or not cfg.strict:
|
| 214 |
-
# handle booleans
|
| 215 |
-
if isinstance(cfg[k], bool):
|
| 216 |
-
cfg[k] = bool(kwargs[k])
|
| 217 |
-
else:
|
| 218 |
-
cfg[k] = kwargs[k]
|
| 219 |
-
|
| 220 |
-
validate_config(cfg)
|
| 221 |
-
|
| 222 |
-
normalize_config(cfg)
|
| 223 |
-
|
| 224 |
-
setup_wandb_env_vars(cfg)
|
| 225 |
-
return cfg
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
def load_datasets(
|
| 229 |
-
*,
|
| 230 |
-
cfg: DictDefault,
|
| 231 |
-
cli_args: TrainerCliArgs,
|
| 232 |
-
) -> TrainDatasetMeta:
|
| 233 |
-
tokenizer = load_tokenizer(cfg)
|
| 234 |
-
|
| 235 |
-
train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer)
|
| 236 |
-
|
| 237 |
-
if cli_args.debug or cfg.debug:
|
| 238 |
-
LOG.info("check_dataset_labels...")
|
| 239 |
-
check_dataset_labels(
|
| 240 |
-
train_dataset.select(
|
| 241 |
-
[
|
| 242 |
-
random.randrange(0, len(train_dataset) - 1) # nosec
|
| 243 |
-
for _ in range(cli_args.debug_num_examples)
|
| 244 |
-
]
|
| 245 |
-
),
|
| 246 |
-
tokenizer,
|
| 247 |
-
num_examples=cli_args.debug_num_examples,
|
| 248 |
-
text_only=cli_args.debug_text_only,
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
-
return TrainDatasetMeta(
|
| 252 |
-
train_dataset=train_dataset,
|
| 253 |
-
eval_dataset=eval_dataset,
|
| 254 |
-
total_num_steps=total_num_steps,
|
| 255 |
)
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
def check_accelerate_default_config():
|
| 259 |
-
if Path(config_args.default_yaml_config_file).exists():
|
| 260 |
-
LOG.warning(
|
| 261 |
-
f"accelerate config file found at {config_args.default_yaml_config_file}. This can lead to unexpected errors"
|
| 262 |
-
)
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
def do_cli(config: Path = Path("examples/"), **kwargs):
|
| 266 |
-
print_axolotl_text_art()
|
| 267 |
parsed_cfg = load_cfg(config, **kwargs)
|
| 268 |
check_accelerate_default_config()
|
| 269 |
parser = transformers.HfArgumentParser((TrainerCliArgs))
|
|
|
|
| 1 |
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
|
|
|
|
|
|
|
| 2 |
import logging
|
|
|
|
|
|
|
|
|
|
| 3 |
from pathlib import Path
|
|
|
|
| 4 |
|
| 5 |
import fire
|
|
|
|
| 6 |
import transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
from axolotl.cli import (
|
| 9 |
+
check_accelerate_default_config,
|
| 10 |
+
do_inference,
|
| 11 |
+
do_merge_lora,
|
| 12 |
+
load_cfg,
|
| 13 |
+
load_datasets,
|
| 14 |
+
print_axolotl_text_art,
|
| 15 |
+
)
|
| 16 |
+
from axolotl.cli.shard import shard
|
| 17 |
+
from axolotl.common.cli import TrainerCliArgs
|
| 18 |
+
from axolotl.train import train
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
LOG = logging.getLogger("axolotl.scripts.finetune")
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
def do_cli(config: Path = Path("examples/"), **kwargs):
|
| 24 |
+
print_axolotl_text_art()
|
| 25 |
+
LOG.warning(
|
| 26 |
+
str(
|
| 27 |
+
PendingDeprecationWarning(
|
| 28 |
+
"scripts/finetune.py will be replaced with calling axolotl.cli.train"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
parsed_cfg = load_cfg(config, **kwargs)
|
| 33 |
check_accelerate_default_config()
|
| 34 |
parser = transformers.HfArgumentParser((TrainerCliArgs))
|
src/axolotl/cli/__init__.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
|
| 2 |
+
|
| 3 |
+
import importlib
|
| 4 |
+
import logging
|
| 5 |
+
import os
|
| 6 |
+
import random
|
| 7 |
+
import sys
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from typing import Any, Dict, List, Optional, Union
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import yaml
|
| 13 |
+
|
| 14 |
+
# add src to the pythonpath so we don't need to pip install this
|
| 15 |
+
from accelerate.commands.config import config_args
|
| 16 |
+
from art import text2art
|
| 17 |
+
from transformers import GenerationConfig, TextStreamer
|
| 18 |
+
|
| 19 |
+
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer
|
| 20 |
+
from axolotl.logging_config import configure_logging
|
| 21 |
+
from axolotl.train import TrainDatasetMeta
|
| 22 |
+
from axolotl.utils.config import normalize_config, validate_config
|
| 23 |
+
from axolotl.utils.data import prepare_dataset
|
| 24 |
+
from axolotl.utils.dict import DictDefault
|
| 25 |
+
from axolotl.utils.distributed import is_main_process
|
| 26 |
+
from axolotl.utils.models import load_tokenizer
|
| 27 |
+
from axolotl.utils.tokenization import check_dataset_labels
|
| 28 |
+
from axolotl.utils.wandb_ import setup_wandb_env_vars
|
| 29 |
+
|
| 30 |
+
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
| 31 |
+
src_dir = os.path.join(project_root, "src")
|
| 32 |
+
sys.path.insert(0, src_dir)
|
| 33 |
+
|
| 34 |
+
configure_logging()
|
| 35 |
+
LOG = logging.getLogger("axolotl.scripts")
|
| 36 |
+
|
| 37 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def print_axolotl_text_art(suffix=None):
|
| 41 |
+
font = "nancyj"
|
| 42 |
+
ascii_text = " axolotl"
|
| 43 |
+
if suffix:
|
| 44 |
+
ascii_text += f" x {suffix}"
|
| 45 |
+
ascii_art = text2art(" axolotl", font=font)
|
| 46 |
+
|
| 47 |
+
if is_main_process():
|
| 48 |
+
print(ascii_art)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_multi_line_input() -> Optional[str]:
|
| 52 |
+
print("Give me an instruction (Ctrl + D to finish): ")
|
| 53 |
+
instruction = ""
|
| 54 |
+
for line in sys.stdin:
|
| 55 |
+
instruction += line # pylint: disable=consider-using-join
|
| 56 |
+
# instruction = pathlib.Path("/proc/self/fd/0").read_text()
|
| 57 |
+
return instruction
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def do_merge_lora(
|
| 61 |
+
*,
|
| 62 |
+
cfg: DictDefault,
|
| 63 |
+
cli_args: TrainerCliArgs,
|
| 64 |
+
):
|
| 65 |
+
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
| 66 |
+
safe_serialization = cfg.save_safetensors is True
|
| 67 |
+
|
| 68 |
+
LOG.info("running merge of LoRA with base model")
|
| 69 |
+
model = model.merge_and_unload()
|
| 70 |
+
model.to(dtype=torch.float16)
|
| 71 |
+
|
| 72 |
+
if cfg.local_rank == 0:
|
| 73 |
+
LOG.info("saving merged model")
|
| 74 |
+
model.save_pretrained(
|
| 75 |
+
str(Path(cfg.output_dir) / "merged"),
|
| 76 |
+
safe_serialization=safe_serialization,
|
| 77 |
+
)
|
| 78 |
+
tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged"))
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def do_inference(
|
| 82 |
+
*,
|
| 83 |
+
cfg: DictDefault,
|
| 84 |
+
cli_args: TrainerCliArgs,
|
| 85 |
+
):
|
| 86 |
+
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
| 87 |
+
prompter = cli_args.prompter
|
| 88 |
+
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
|
| 89 |
+
|
| 90 |
+
for token, symbol in default_tokens.items():
|
| 91 |
+
# If the token isn't already specified in the config, add it
|
| 92 |
+
if not (cfg.special_tokens and token in cfg.special_tokens):
|
| 93 |
+
tokenizer.add_special_tokens({token: symbol})
|
| 94 |
+
|
| 95 |
+
prompter_module = None
|
| 96 |
+
if prompter:
|
| 97 |
+
prompter_module = getattr(
|
| 98 |
+
importlib.import_module("axolotl.prompters"), prompter
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
if cfg.landmark_attention:
|
| 102 |
+
from axolotl.monkeypatch.llama_landmark_attn import set_model_mem_id
|
| 103 |
+
|
| 104 |
+
set_model_mem_id(model, tokenizer)
|
| 105 |
+
model.set_mem_cache_args(
|
| 106 |
+
max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
model = model.to(cfg.device)
|
| 110 |
+
|
| 111 |
+
while True:
|
| 112 |
+
print("=" * 80)
|
| 113 |
+
# support for multiline inputs
|
| 114 |
+
instruction = get_multi_line_input()
|
| 115 |
+
if not instruction:
|
| 116 |
+
return
|
| 117 |
+
if prompter_module:
|
| 118 |
+
prompt: str = next(
|
| 119 |
+
prompter_module().build_prompt(instruction=instruction.strip("\n"))
|
| 120 |
+
)
|
| 121 |
+
else:
|
| 122 |
+
prompt = instruction.strip()
|
| 123 |
+
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
|
| 124 |
+
|
| 125 |
+
print("=" * 40)
|
| 126 |
+
model.eval()
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
generation_config = GenerationConfig(
|
| 129 |
+
repetition_penalty=1.1,
|
| 130 |
+
max_new_tokens=1024,
|
| 131 |
+
temperature=0.9,
|
| 132 |
+
top_p=0.95,
|
| 133 |
+
top_k=40,
|
| 134 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 135 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 136 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 137 |
+
do_sample=True,
|
| 138 |
+
use_cache=True,
|
| 139 |
+
return_dict_in_generate=True,
|
| 140 |
+
output_attentions=False,
|
| 141 |
+
output_hidden_states=False,
|
| 142 |
+
output_scores=False,
|
| 143 |
+
)
|
| 144 |
+
streamer = TextStreamer(tokenizer)
|
| 145 |
+
generated = model.generate(
|
| 146 |
+
inputs=batch["input_ids"].to(cfg.device),
|
| 147 |
+
generation_config=generation_config,
|
| 148 |
+
streamer=streamer,
|
| 149 |
+
)
|
| 150 |
+
print("=" * 40)
|
| 151 |
+
print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def choose_config(path: Path):
|
| 155 |
+
yaml_files = list(path.glob("*.yml"))
|
| 156 |
+
|
| 157 |
+
if not yaml_files:
|
| 158 |
+
raise ValueError(
|
| 159 |
+
"No YAML config files found in the specified directory. Are you using a .yml extension?"
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
if len(yaml_files) == 1:
|
| 163 |
+
print(f"Using default YAML file '{yaml_files[0]}'")
|
| 164 |
+
return yaml_files[0]
|
| 165 |
+
|
| 166 |
+
print("Choose a YAML file:")
|
| 167 |
+
for idx, file in enumerate(yaml_files):
|
| 168 |
+
print(f"{idx + 1}. {file}")
|
| 169 |
+
|
| 170 |
+
chosen_file = None
|
| 171 |
+
while chosen_file is None:
|
| 172 |
+
try:
|
| 173 |
+
choice = int(input("Enter the number of your choice: "))
|
| 174 |
+
if 1 <= choice <= len(yaml_files):
|
| 175 |
+
chosen_file = yaml_files[choice - 1]
|
| 176 |
+
else:
|
| 177 |
+
print("Invalid choice. Please choose a number from the list.")
|
| 178 |
+
except ValueError:
|
| 179 |
+
print("Invalid input. Please enter a number.")
|
| 180 |
+
|
| 181 |
+
return chosen_file
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool:
|
| 185 |
+
return not any(el in list2 for el in list1)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def load_cfg(config: Path = Path("examples/"), **kwargs):
|
| 189 |
+
if Path(config).is_dir():
|
| 190 |
+
config = choose_config(config)
|
| 191 |
+
|
| 192 |
+
# load the config from the yaml file
|
| 193 |
+
with open(config, encoding="utf-8") as file:
|
| 194 |
+
cfg: DictDefault = DictDefault(yaml.safe_load(file))
|
| 195 |
+
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
| 196 |
+
# then overwrite the value
|
| 197 |
+
cfg_keys = cfg.keys()
|
| 198 |
+
for k, _ in kwargs.items():
|
| 199 |
+
# if not strict, allow writing to cfg even if it's not in the yml already
|
| 200 |
+
if k in cfg_keys or not cfg.strict:
|
| 201 |
+
# handle booleans
|
| 202 |
+
if isinstance(cfg[k], bool):
|
| 203 |
+
cfg[k] = bool(kwargs[k])
|
| 204 |
+
else:
|
| 205 |
+
cfg[k] = kwargs[k]
|
| 206 |
+
|
| 207 |
+
validate_config(cfg)
|
| 208 |
+
|
| 209 |
+
normalize_config(cfg)
|
| 210 |
+
|
| 211 |
+
setup_wandb_env_vars(cfg)
|
| 212 |
+
return cfg
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def load_datasets(
|
| 216 |
+
*,
|
| 217 |
+
cfg: DictDefault,
|
| 218 |
+
cli_args: TrainerCliArgs,
|
| 219 |
+
) -> TrainDatasetMeta:
|
| 220 |
+
tokenizer = load_tokenizer(cfg)
|
| 221 |
+
|
| 222 |
+
train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer)
|
| 223 |
+
|
| 224 |
+
if cli_args.debug or cfg.debug:
|
| 225 |
+
LOG.info("check_dataset_labels...")
|
| 226 |
+
check_dataset_labels(
|
| 227 |
+
train_dataset.select(
|
| 228 |
+
[
|
| 229 |
+
random.randrange(0, len(train_dataset) - 1) # nosec
|
| 230 |
+
for _ in range(cli_args.debug_num_examples)
|
| 231 |
+
]
|
| 232 |
+
),
|
| 233 |
+
tokenizer,
|
| 234 |
+
num_examples=cli_args.debug_num_examples,
|
| 235 |
+
text_only=cli_args.debug_text_only,
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
return TrainDatasetMeta(
|
| 239 |
+
train_dataset=train_dataset,
|
| 240 |
+
eval_dataset=eval_dataset,
|
| 241 |
+
total_num_steps=total_num_steps,
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def check_accelerate_default_config():
|
| 246 |
+
if Path(config_args.default_yaml_config_file).exists():
|
| 247 |
+
LOG.warning(
|
| 248 |
+
f"accelerate config file found at {config_args.default_yaml_config_file}. This can lead to unexpected errors"
|
| 249 |
+
)
|
src/axolotl/cli/inference.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
CLI to run inference on a trained model
|
| 3 |
+
"""
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import fire
|
| 7 |
+
import transformers
|
| 8 |
+
|
| 9 |
+
from axolotl.cli import do_inference, load_cfg, print_axolotl_text_art
|
| 10 |
+
from axolotl.common.cli import TrainerCliArgs
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def do_cli(config: Path = Path("examples/"), **kwargs):
|
| 14 |
+
# pylint: disable=duplicate-code
|
| 15 |
+
print_axolotl_text_art()
|
| 16 |
+
parsed_cfg = load_cfg(config, **kwargs)
|
| 17 |
+
parser = transformers.HfArgumentParser((TrainerCliArgs))
|
| 18 |
+
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
|
| 19 |
+
return_remaining_strings=True
|
| 20 |
+
)
|
| 21 |
+
parsed_cli_args.inference = True
|
| 22 |
+
|
| 23 |
+
do_inference(cfg=parsed_cfg, cli_args=parsed_cli_args)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
fire.Fire(do_cli)
|
src/axolotl/cli/merge_lora.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
CLI to run merge a trained LoRA into a base model
|
| 3 |
+
"""
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import fire
|
| 7 |
+
import transformers
|
| 8 |
+
|
| 9 |
+
from axolotl.cli import do_merge_lora, load_cfg, print_axolotl_text_art
|
| 10 |
+
from axolotl.common.cli import TrainerCliArgs
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def do_cli(config: Path = Path("examples/"), **kwargs):
|
| 14 |
+
# pylint: disable=duplicate-code
|
| 15 |
+
print_axolotl_text_art()
|
| 16 |
+
parsed_cfg = load_cfg(config, **kwargs)
|
| 17 |
+
parser = transformers.HfArgumentParser((TrainerCliArgs))
|
| 18 |
+
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
|
| 19 |
+
return_remaining_strings=True
|
| 20 |
+
)
|
| 21 |
+
parsed_cli_args.merge_lora = True
|
| 22 |
+
|
| 23 |
+
do_merge_lora(cfg=parsed_cfg, cli_args=parsed_cli_args)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
fire.Fire(do_cli)
|
src/axolotl/cli/shard.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
CLI to shard a trained model into 10GiB chunks
|
| 3 |
+
"""
|
| 4 |
+
import logging
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import fire
|
| 8 |
+
import transformers
|
| 9 |
+
|
| 10 |
+
from axolotl.cli import load_cfg, print_axolotl_text_art
|
| 11 |
+
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer
|
| 12 |
+
from axolotl.utils.dict import DictDefault
|
| 13 |
+
|
| 14 |
+
LOG = logging.getLogger("axolotl.scripts")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def shard(
|
| 18 |
+
*,
|
| 19 |
+
cfg: DictDefault,
|
| 20 |
+
cli_args: TrainerCliArgs,
|
| 21 |
+
):
|
| 22 |
+
model, _ = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
|
| 23 |
+
safe_serialization = cfg.save_safetensors is True
|
| 24 |
+
LOG.debug("Re-saving model w/ sharding")
|
| 25 |
+
model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def do_cli(config: Path = Path("examples/"), **kwargs):
|
| 29 |
+
# pylint: disable=duplicate-code
|
| 30 |
+
print_axolotl_text_art()
|
| 31 |
+
parsed_cfg = load_cfg(config, **kwargs)
|
| 32 |
+
parser = transformers.HfArgumentParser((TrainerCliArgs))
|
| 33 |
+
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
|
| 34 |
+
return_remaining_strings=True
|
| 35 |
+
)
|
| 36 |
+
parsed_cli_args.shard = True
|
| 37 |
+
|
| 38 |
+
shard(cfg=parsed_cfg, cli_args=parsed_cli_args)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
fire.Fire(do_cli)
|
src/axolotl/cli/train.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
CLI to run training on a model
|
| 3 |
+
"""
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import fire
|
| 7 |
+
import transformers
|
| 8 |
+
|
| 9 |
+
from axolotl.cli import (
|
| 10 |
+
check_accelerate_default_config,
|
| 11 |
+
load_cfg,
|
| 12 |
+
load_datasets,
|
| 13 |
+
print_axolotl_text_art,
|
| 14 |
+
)
|
| 15 |
+
from axolotl.common.cli import TrainerCliArgs
|
| 16 |
+
from axolotl.train import train
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def do_cli(config: Path = Path("examples/"), **kwargs):
|
| 20 |
+
# pylint: disable=duplicate-code
|
| 21 |
+
print_axolotl_text_art()
|
| 22 |
+
parsed_cfg = load_cfg(config, **kwargs)
|
| 23 |
+
check_accelerate_default_config()
|
| 24 |
+
parser = transformers.HfArgumentParser((TrainerCliArgs))
|
| 25 |
+
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
|
| 26 |
+
return_remaining_strings=True
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
dataset_meta = load_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args)
|
| 30 |
+
if parsed_cli_args.prepare_ds_only:
|
| 31 |
+
return
|
| 32 |
+
train(cfg=parsed_cfg, cli_args=parsed_cli_args, dataset_meta=dataset_meta)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
fire.Fire(do_cli)
|