Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,15 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
-
from openai import OpenAI
|
| 4 |
-
import tempfile
|
| 5 |
-
from langchain.chains import ConversationalRetrievalChain
|
| 6 |
-
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
| 7 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
-
from langchain_community.vectorstores import Chroma
|
| 9 |
-
from langchain_community.document_loaders import (
|
| 10 |
-
PyPDFLoader,
|
| 11 |
-
TextLoader,
|
| 12 |
-
CSVLoader
|
| 13 |
-
)
|
| 14 |
from datetime import datetime
|
| 15 |
from pydub import AudioSegment
|
|
|
|
| 16 |
import pytz
|
| 17 |
-
|
| 18 |
from langchain.chains import ConversationalRetrievalChain
|
| 19 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 20 |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
| 21 |
from langchain_community.vectorstores import Chroma
|
| 22 |
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
|
| 23 |
-
import os
|
| 24 |
-
import tempfile
|
| 25 |
-
from datetime import datetime
|
| 26 |
-
import pytz
|
| 27 |
|
| 28 |
|
| 29 |
class DocumentRAG:
|
|
@@ -53,12 +39,10 @@ class DocumentRAG:
|
|
| 53 |
try:
|
| 54 |
documents = []
|
| 55 |
for uploaded_file in uploaded_files:
|
| 56 |
-
# Save uploaded file to a temporary location
|
| 57 |
temp_file_path = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]).name
|
| 58 |
with open(temp_file_path, "wb") as temp_file:
|
| 59 |
temp_file.write(uploaded_file.read())
|
| 60 |
|
| 61 |
-
# Determine the loader based on the file type
|
| 62 |
if temp_file_path.endswith('.pdf'):
|
| 63 |
loader = PyPDFLoader(temp_file_path)
|
| 64 |
elif temp_file_path.endswith('.txt'):
|
|
@@ -68,7 +52,6 @@ class DocumentRAG:
|
|
| 68 |
else:
|
| 69 |
return f"Unsupported file type: {uploaded_file.name}"
|
| 70 |
|
| 71 |
-
# Load the documents
|
| 72 |
try:
|
| 73 |
documents.extend(loader.load())
|
| 74 |
except Exception as e:
|
|
@@ -77,7 +60,6 @@ class DocumentRAG:
|
|
| 77 |
if not documents:
|
| 78 |
return "No valid documents were processed. Please check your files."
|
| 79 |
|
| 80 |
-
# Split text for better processing
|
| 81 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 82 |
chunk_size=1000,
|
| 83 |
chunk_overlap=200,
|
|
@@ -85,16 +67,14 @@ class DocumentRAG:
|
|
| 85 |
)
|
| 86 |
documents = text_splitter.split_documents(documents)
|
| 87 |
|
| 88 |
-
# Combine text for summary
|
| 89 |
combined_text = " ".join([doc.page_content for doc in documents])
|
| 90 |
self.document_summary = self.generate_summary(combined_text)
|
| 91 |
|
| 92 |
-
# Create embeddings and initialize retrieval chain
|
| 93 |
embeddings = OpenAIEmbeddings(api_key=self.api_key)
|
| 94 |
self.document_store = Chroma.from_documents(
|
| 95 |
documents,
|
| 96 |
embeddings,
|
| 97 |
-
persist_directory=self.chroma_persist_dir
|
| 98 |
)
|
| 99 |
|
| 100 |
self.qa_chain = ConversationalRetrievalChain.from_llm(
|
|
@@ -137,8 +117,6 @@ class DocumentRAG:
|
|
| 137 |
|
| 138 |
try:
|
| 139 |
client = OpenAI(api_key=self.api_key)
|
| 140 |
-
|
| 141 |
-
# Generate podcast script
|
| 142 |
script_response = client.chat.completions.create(
|
| 143 |
model="gpt-4",
|
| 144 |
messages=[
|
|
@@ -157,7 +135,6 @@ class DocumentRAG:
|
|
| 157 |
if not script:
|
| 158 |
return "Error: Failed to generate podcast script.", None
|
| 159 |
|
| 160 |
-
# Convert script to audio
|
| 161 |
final_audio = AudioSegment.empty()
|
| 162 |
is_first_speaker = True
|
| 163 |
|
|
@@ -201,98 +178,43 @@ class DocumentRAG:
|
|
| 201 |
except Exception as e:
|
| 202 |
return f"Error generating podcast: {str(e)}", None
|
| 203 |
|
| 204 |
-
def generate_summary(self, text):
|
| 205 |
-
"""Generate a summary of the provided text."""
|
| 206 |
-
if not self.api_key:
|
| 207 |
-
return "API Key not set. Please set it in the environment variables."
|
| 208 |
-
try:
|
| 209 |
-
client = OpenAI(api_key=self.api_key)
|
| 210 |
-
response = client.chat.completions.create(
|
| 211 |
-
model="gpt-4",
|
| 212 |
-
messages=[
|
| 213 |
-
{"role": "system", "content": "Summarize the document content concisely and provide 3-5 key points for discussion."},
|
| 214 |
-
{"role": "user", "content": text[:4000]}
|
| 215 |
-
],
|
| 216 |
-
temperature=0.3
|
| 217 |
-
)
|
| 218 |
-
return response.choices[0].message.content
|
| 219 |
-
except Exception as e:
|
| 220 |
-
return f"Error generating summary: {str(e)}"
|
| 221 |
-
|
| 222 |
-
def handle_query(self, question, history):
|
| 223 |
-
"""Handle user queries."""
|
| 224 |
-
if not self.qa_chain:
|
| 225 |
-
return history + [("System", "Please process the documents first.")]
|
| 226 |
-
try:
|
| 227 |
-
preface = """
|
| 228 |
-
Instruction: Respond in English. Be professional and concise, keeping the response under 300 words.
|
| 229 |
-
If you cannot provide an answer, say: "I am not sure about this question. Please try asking something else."
|
| 230 |
-
"""
|
| 231 |
-
query = f"{preface}\nQuery: {question}"
|
| 232 |
-
|
| 233 |
-
result = self.qa_chain({
|
| 234 |
-
"question": query,
|
| 235 |
-
"chat_history": [(q, a) for q, a in history]
|
| 236 |
-
})
|
| 237 |
-
|
| 238 |
-
if "answer" not in result:
|
| 239 |
-
return history + [("System", "Sorry, an error occurred.")]
|
| 240 |
-
|
| 241 |
-
history.append((question, result["answer"]))
|
| 242 |
-
return history
|
| 243 |
-
except Exception as e:
|
| 244 |
-
return history + [("System", f"Error: {str(e)}")]
|
| 245 |
|
| 246 |
# Initialize RAG system in session state
|
| 247 |
if "rag_system" not in st.session_state:
|
| 248 |
st.session_state.rag_system = DocumentRAG()
|
| 249 |
|
| 250 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
st.title("Document Analyzer and Podcast Generator")
|
| 252 |
|
| 253 |
-
# Fetch the API key status
|
| 254 |
-
if "OPENAI_API_KEY" not in os.environ or not os.getenv("OPENAI_API_KEY"):
|
| 255 |
-
st.error("The 'OPENAI_API_KEY' environment variable is not set. Please configure it in your hosting environment.")
|
| 256 |
-
|
| 257 |
-
# File upload
|
| 258 |
-
st.subheader("Step 1: Upload Documents")
|
| 259 |
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
|
| 260 |
|
| 261 |
if st.button("Process Documents"):
|
| 262 |
if uploaded_files:
|
| 263 |
-
# Process the uploaded files
|
| 264 |
result = st.session_state.rag_system.process_documents(uploaded_files)
|
| 265 |
-
if "successfully" in result
|
| 266 |
-
st.success(result)
|
| 267 |
-
else:
|
| 268 |
-
st.error(result)
|
| 269 |
else:
|
| 270 |
st.warning("No files uploaded.")
|
| 271 |
|
| 272 |
-
# Document Q&A
|
| 273 |
-
st.subheader("Step 2: Ask Questions")
|
| 274 |
-
if st.session_state.rag_system.qa_chain:
|
| 275 |
-
history = []
|
| 276 |
-
user_question = st.text_input("Ask a question:")
|
| 277 |
-
if st.button("Submit Question"):
|
| 278 |
-
# Handle the user query
|
| 279 |
-
history = st.session_state.rag_system.handle_query(user_question, history)
|
| 280 |
-
for question, answer in history:
|
| 281 |
-
st.chat_message("user").write(question)
|
| 282 |
-
st.chat_message("assistant").write(answer)
|
| 283 |
-
else:
|
| 284 |
-
st.info("Please process documents before asking questions.")
|
| 285 |
-
|
| 286 |
-
# Podcast Generation
|
| 287 |
-
st.subheader("Step 3: Generate Podcast")
|
| 288 |
if st.session_state.rag_system.document_summary:
|
|
|
|
| 289 |
if st.button("Generate Podcast"):
|
| 290 |
script, audio_path = st.session_state.rag_system.create_podcast()
|
| 291 |
if audio_path:
|
| 292 |
st.text_area("Generated Podcast Script", script, height=200)
|
| 293 |
st.audio(audio_path, format="audio/mp3")
|
| 294 |
-
st.success("Podcast generated successfully!
|
| 295 |
-
else:
|
| 296 |
-
st.error(script)
|
| 297 |
-
else:
|
| 298 |
-
st.info("Please process documents to generate a podcast.")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
from pydub import AudioSegment
|
| 5 |
+
import tempfile
|
| 6 |
import pytz
|
| 7 |
+
from openai import OpenAI
|
| 8 |
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
| 11 |
from langchain_community.vectorstores import Chroma
|
| 12 |
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
class DocumentRAG:
|
|
|
|
| 39 |
try:
|
| 40 |
documents = []
|
| 41 |
for uploaded_file in uploaded_files:
|
|
|
|
| 42 |
temp_file_path = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]).name
|
| 43 |
with open(temp_file_path, "wb") as temp_file:
|
| 44 |
temp_file.write(uploaded_file.read())
|
| 45 |
|
|
|
|
| 46 |
if temp_file_path.endswith('.pdf'):
|
| 47 |
loader = PyPDFLoader(temp_file_path)
|
| 48 |
elif temp_file_path.endswith('.txt'):
|
|
|
|
| 52 |
else:
|
| 53 |
return f"Unsupported file type: {uploaded_file.name}"
|
| 54 |
|
|
|
|
| 55 |
try:
|
| 56 |
documents.extend(loader.load())
|
| 57 |
except Exception as e:
|
|
|
|
| 60 |
if not documents:
|
| 61 |
return "No valid documents were processed. Please check your files."
|
| 62 |
|
|
|
|
| 63 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 64 |
chunk_size=1000,
|
| 65 |
chunk_overlap=200,
|
|
|
|
| 67 |
)
|
| 68 |
documents = text_splitter.split_documents(documents)
|
| 69 |
|
|
|
|
| 70 |
combined_text = " ".join([doc.page_content for doc in documents])
|
| 71 |
self.document_summary = self.generate_summary(combined_text)
|
| 72 |
|
|
|
|
| 73 |
embeddings = OpenAIEmbeddings(api_key=self.api_key)
|
| 74 |
self.document_store = Chroma.from_documents(
|
| 75 |
documents,
|
| 76 |
embeddings,
|
| 77 |
+
persist_directory=self.chroma_persist_dir
|
| 78 |
)
|
| 79 |
|
| 80 |
self.qa_chain = ConversationalRetrievalChain.from_llm(
|
|
|
|
| 117 |
|
| 118 |
try:
|
| 119 |
client = OpenAI(api_key=self.api_key)
|
|
|
|
|
|
|
| 120 |
script_response = client.chat.completions.create(
|
| 121 |
model="gpt-4",
|
| 122 |
messages=[
|
|
|
|
| 135 |
if not script:
|
| 136 |
return "Error: Failed to generate podcast script.", None
|
| 137 |
|
|
|
|
| 138 |
final_audio = AudioSegment.empty()
|
| 139 |
is_first_speaker = True
|
| 140 |
|
|
|
|
| 178 |
except Exception as e:
|
| 179 |
return f"Error generating podcast: {str(e)}", None
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
# Initialize RAG system in session state
|
| 183 |
if "rag_system" not in st.session_state:
|
| 184 |
st.session_state.rag_system = DocumentRAG()
|
| 185 |
|
| 186 |
+
# Sidebar
|
| 187 |
+
with st.sidebar:
|
| 188 |
+
st.title("About")
|
| 189 |
+
st.markdown(
|
| 190 |
+
"""
|
| 191 |
+
This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW).
|
| 192 |
+
It allows users to upload documents, generate summaries, ask questions, and create podcasts.
|
| 193 |
+
"""
|
| 194 |
+
)
|
| 195 |
+
st.markdown("### Steps:")
|
| 196 |
+
st.markdown("1. Upload documents.")
|
| 197 |
+
st.markdown("2. Generate summaries.")
|
| 198 |
+
st.markdown("3. Ask questions.")
|
| 199 |
+
st.markdown("4. Create podcasts.")
|
| 200 |
+
|
| 201 |
+
# Main App
|
| 202 |
st.title("Document Analyzer and Podcast Generator")
|
| 203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
|
| 205 |
|
| 206 |
if st.button("Process Documents"):
|
| 207 |
if uploaded_files:
|
|
|
|
| 208 |
result = st.session_state.rag_system.process_documents(uploaded_files)
|
| 209 |
+
st.success(result) if "successfully" in result else st.error(result)
|
|
|
|
|
|
|
|
|
|
| 210 |
else:
|
| 211 |
st.warning("No files uploaded.")
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
if st.session_state.rag_system.document_summary:
|
| 214 |
+
st.subheader("Step 2: Generate Podcast")
|
| 215 |
if st.button("Generate Podcast"):
|
| 216 |
script, audio_path = st.session_state.rag_system.create_podcast()
|
| 217 |
if audio_path:
|
| 218 |
st.text_area("Generated Podcast Script", script, height=200)
|
| 219 |
st.audio(audio_path, format="audio/mp3")
|
| 220 |
+
st.success("Podcast generated successfully!")
|
|
|
|
|
|
|
|
|
|
|
|