Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Add working files
Browse files- README.md +7 -12
- app.py +110 -273
- briarmbg.py +455 -0
- foo.py +2 -0
- input.jpg +0 -0
- requirements.txt +9 -26
    	
        README.md
    CHANGED
    
    | @@ -1,18 +1,13 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
            -
            title:  | 
| 3 | 
            -
            emoji:  | 
| 4 | 
            -
            colorFrom:  | 
| 5 | 
            -
            colorTo:  | 
| 6 | 
            -
            tags:
         | 
| 7 | 
            -
            - sound generation
         | 
| 8 | 
            -
            - language models
         | 
| 9 | 
            -
            - LLMs
         | 
| 10 | 
             
            sdk: gradio
         | 
| 11 | 
            -
            sdk_version: 4. | 
| 12 | 
             
            app_file: app.py
         | 
| 13 | 
             
            pinned: false
         | 
| 14 | 
            -
            license:  | 
| 15 | 
            -
            short_description: Sound effect from description
         | 
| 16 | 
             
            ---
         | 
| 17 |  | 
| 18 | 
            -
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
            +
            title: BRIA RMBG 1.4
         | 
| 3 | 
            +
            emoji: 💻
         | 
| 4 | 
            +
            colorFrom: red
         | 
| 5 | 
            +
            colorTo: red
         | 
|  | |
|  | |
|  | |
|  | |
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 4.16.0
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
            +
            license: other
         | 
|  | |
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            +
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
    	
        app.py
    CHANGED
    
    | @@ -1,278 +1,115 @@ | |
| 1 | 
            -
            import  | 
| 2 | 
            -
            import json
         | 
| 3 | 
             
            import torch
         | 
| 4 | 
            -
            import  | 
| 5 | 
            -
            import  | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
            -
             | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
             | 
| 18 | 
            -
            from pydub import AudioSegment
         | 
| 19 | 
            -
             | 
| 20 | 
            -
            max_64_bit_int = 2**63 - 1
         | 
| 21 | 
            -
             | 
| 22 | 
            -
            # Automatic device detection
         | 
| 23 | 
             
            if torch.cuda.is_available():
         | 
| 24 | 
            -
                 | 
| 25 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 26 | 
             
            else:
         | 
| 27 | 
            -
                 | 
| 28 | 
            -
                 | 
| 29 | 
            -
             | 
| 30 | 
            -
            class Tango:
         | 
| 31 | 
            -
                def __init__(self, name = "declare-lab/tango2", device = device_selection):
         | 
| 32 | 
            -
                    
         | 
| 33 | 
            -
                    path = snapshot_download(repo_id = name)
         | 
| 34 | 
            -
                    
         | 
| 35 | 
            -
                    vae_config = json.load(open("{}/vae_config.json".format(path)))
         | 
| 36 | 
            -
                    stft_config = json.load(open("{}/stft_config.json".format(path)))
         | 
| 37 | 
            -
                    main_config = json.load(open("{}/main_config.json".format(path)))
         | 
| 38 | 
            -
                    
         | 
| 39 | 
            -
                    self.vae = AutoencoderKL(**vae_config).to(device)
         | 
| 40 | 
            -
                    self.stft = TacotronSTFT(**stft_config).to(device)
         | 
| 41 | 
            -
                    self.model = AudioDiffusion(**main_config).to(device)
         | 
| 42 | 
            -
                    
         | 
| 43 | 
            -
                    vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device)
         | 
| 44 | 
            -
                    stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device)
         | 
| 45 | 
            -
                    main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device)
         | 
| 46 | 
            -
                    
         | 
| 47 | 
            -
                    self.vae.load_state_dict(vae_weights)
         | 
| 48 | 
            -
                    self.stft.load_state_dict(stft_weights)
         | 
| 49 | 
            -
                    self.model.load_state_dict(main_weights)
         | 
| 50 |  | 
| 51 | 
            -
                    print ("Successfully loaded checkpoint from:", name)
         | 
| 52 | 
            -
                    
         | 
| 53 | 
            -
                    self.vae.eval()
         | 
| 54 | 
            -
                    self.stft.eval()
         | 
| 55 | 
            -
                    self.model.eval()
         | 
| 56 | 
            -
                    
         | 
| 57 | 
            -
                    self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
         | 
| 58 | 
            -
                    
         | 
| 59 | 
            -
                def chunks(self, lst, n):
         | 
| 60 | 
            -
                    # Yield successive n-sized chunks from a list
         | 
| 61 | 
            -
                    for i in range(0, len(lst), n):
         | 
| 62 | 
            -
                        yield lst[i:i + n]
         | 
| 63 | 
            -
                    
         | 
| 64 | 
            -
                def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
         | 
| 65 | 
            -
                    # Generate audio for a single prompt string
         | 
| 66 | 
            -
                    with torch.no_grad():
         | 
| 67 | 
            -
                        latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
         | 
| 68 | 
            -
                        mel = self.vae.decode_first_stage(latents)
         | 
| 69 | 
            -
                        wave = self.vae.decode_to_waveform(mel)
         | 
| 70 | 
            -
                    return wave
         | 
| 71 |  | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
| 76 | 
            -
             | 
| 77 | 
            -
             | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
| 84 | 
            -
             | 
| 85 | 
            -
             | 
| 86 | 
            -
             | 
| 87 | 
            -
             | 
| 88 | 
            -
             | 
| 89 | 
            -
             | 
| 90 | 
            -
             | 
| 91 | 
            -
             | 
| 92 | 
            -
             | 
| 93 | 
            -
             | 
| 94 | 
            -
             | 
| 95 | 
            -
             | 
| 96 | 
            -
                 | 
| 97 | 
            -
             | 
| 98 | 
            -
             | 
| 99 | 
            -
                 | 
| 100 | 
            -
                 | 
| 101 | 
            -
                 | 
| 102 | 
            -
                 | 
| 103 | 
            -
                 | 
| 104 | 
            -
                 | 
| 105 | 
            -
             | 
| 106 | 
            -
                 | 
| 107 | 
            -
             | 
| 108 | 
            -
                 | 
| 109 | 
            -
             | 
| 110 | 
            -
             | 
| 111 | 
            -
             | 
| 112 | 
            -
             | 
| 113 | 
            -
             | 
| 114 | 
            -
             | 
| 115 | 
            -
             | 
| 116 | 
            -
             | 
| 117 | 
            -
             | 
| 118 | 
            -
             | 
| 119 | 
            -
             | 
| 120 | 
            -
             | 
| 121 | 
            -
             | 
| 122 | 
            -
             | 
| 123 | 
            -
             | 
| 124 | 
            -
             | 
| 125 | 
            -
             | 
| 126 | 
            -
            ) | 
| 127 | 
            -
             | 
| 128 | 
            -
             | 
| 129 | 
            -
             | 
| 130 | 
            -
             | 
| 131 | 
            -
             | 
| 132 | 
            -
             | 
| 133 | 
            -
             | 
| 134 | 
            -
             | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
             | 
| 141 | 
            -
             | 
| 142 | 
            -
                 | 
| 143 | 
            -
                 | 
| 144 | 
            -
             | 
| 145 | 
            -
             | 
| 146 | 
            -
             | 
| 147 | 
            -
             | 
| 148 | 
            -
             | 
| 149 | 
            -
             | 
| 150 | 
            -
             | 
| 151 | 
            -
             | 
| 152 | 
            -
             | 
| 153 | 
            -
             | 
| 154 | 
            -
             | 
| 155 | 
            -
             | 
| 156 | 
            -
             | 
| 157 | 
            -
            # Gradio interface
         | 
| 158 | 
            -
            with gr.Blocks() as interface:
         | 
| 159 | 
            -
                gr.Markdown("""
         | 
| 160 | 
            -
                    <p style="text-align: center;">
         | 
| 161 | 
            -
                    <b><big><big><big>Text-to-Audio</big></big></big></b>
         | 
| 162 | 
            -
                    <br/>Generates 10 seconds of sound effects from description, freely, without account, without watermark
         | 
| 163 | 
            -
                    </p>
         | 
| 164 | 
            -
                    <br/>
         | 
| 165 | 
            -
                    <br/>
         | 
| 166 | 
            -
                    ✨ Powered by <i>Tango 2</i> AI.
         | 
| 167 | 
            -
                    <br/>
         | 
| 168 | 
            -
                    <ul>
         | 
| 169 | 
            -
                    <li>If you need <b>47 seconds</b> of audio, I recommend to use <i>Stable Audio</i>,</li>
         | 
| 170 | 
            -
                    <li>If you need to generate <b>music</b>, I recommend to use <i>MusicGen</i>,</li>
         | 
| 171 | 
            -
                    </ul>
         | 
| 172 | 
            -
                    <br/>
         | 
| 173 | 
            -
                    """ + ("🏃♀️ Estimated time: few minutes. Current device: GPU." if torch.cuda.is_available() else "🐌 Slow process... ~5 min. Current device: CPU.") + """
         | 
| 174 | 
            -
                    Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it's designed to work on CPU, GPU and ZeroGPU.<br/>
         | 
| 175 | 
            -
                    <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true&hidden=public&hidden=public'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
         | 
| 176 | 
            -
                    <br/>
         | 
| 177 | 
            -
                    ⚖️ You can use, modify and share the generated sounds but not for commercial uses.
         | 
| 178 | 
            -
                    """
         | 
| 179 | 
            -
                )
         | 
| 180 | 
            -
                input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
         | 
| 181 | 
            -
                with gr.Accordion("Advanced options", open = False):
         | 
| 182 | 
            -
                    output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
         | 
| 183 | 
            -
                    output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 1, step = 1, interactive = True)
         | 
| 184 | 
            -
                    denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 10, maximum = 200, value = 10, step = 1, interactive = True)
         | 
| 185 | 
            -
                    guidance_scale = gr.Slider(label = "Guidance Scale", info = "lower=audio quality, higher=follow the prompt", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True)
         | 
| 186 | 
            -
                    randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
         | 
| 187 | 
            -
                    seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
         | 
| 188 | 
            -
             | 
| 189 | 
            -
                submit = gr.Button("🚀 Generate", variant = "primary")
         | 
| 190 | 
            -
             | 
| 191 | 
            -
                output_audio_1 = gr.Audio(label = "Generated Audio #1/3", format = "wav", type="numpy", autoplay = True)
         | 
| 192 | 
            -
                output_audio_2 = gr.Audio(label = "Generated Audio #2/3", format = "wav", type="numpy")
         | 
| 193 | 
            -
                output_audio_3 = gr.Audio(label = "Generated Audio #3/3", format = "wav", type="numpy")
         | 
| 194 | 
            -
                information = gr.Label(label = "Information")
         | 
| 195 | 
            -
             | 
| 196 | 
            -
                submit.click(fn = update_seed, inputs = [
         | 
| 197 | 
            -
                    randomize_seed,
         | 
| 198 | 
            -
                    seed
         | 
| 199 | 
            -
                ], outputs = [
         | 
| 200 | 
            -
                    seed
         | 
| 201 | 
            -
                ], queue = False, show_progress = False).then(fn = check, inputs = [
         | 
| 202 | 
            -
                    input_text,
         | 
| 203 | 
            -
                    output_number,
         | 
| 204 | 
            -
                    denoising_steps,
         | 
| 205 | 
            -
                    guidance_scale,
         | 
| 206 | 
            -
                    randomize_seed,
         | 
| 207 | 
            -
                    seed
         | 
| 208 | 
            -
                ], outputs = [], queue = False, show_progress = False).success(fn = update_output, inputs = [
         | 
| 209 | 
            -
                    output_format,
         | 
| 210 | 
            -
                    output_number
         | 
| 211 | 
            -
                ], outputs = [
         | 
| 212 | 
            -
                    output_audio_1,
         | 
| 213 | 
            -
                    output_audio_2,
         | 
| 214 | 
            -
                    output_audio_3,
         | 
| 215 | 
            -
                    information
         | 
| 216 | 
            -
                ], queue = False, show_progress = False).success(fn = text2audio, inputs = [
         | 
| 217 | 
            -
                    input_text,
         | 
| 218 | 
            -
                    output_number,
         | 
| 219 | 
            -
                    denoising_steps,
         | 
| 220 | 
            -
                    guidance_scale,
         | 
| 221 | 
            -
                    randomize_seed,
         | 
| 222 | 
            -
                    seed
         | 
| 223 | 
            -
                ], outputs = [
         | 
| 224 | 
            -
                    output_audio_1,
         | 
| 225 | 
            -
                    output_audio_2,
         | 
| 226 | 
            -
                    output_audio_3,
         | 
| 227 | 
            -
                    information
         | 
| 228 | 
            -
                ], scroll_to_output = True)
         | 
| 229 | 
            -
             | 
| 230 | 
            -
                gr.Examples(
         | 
| 231 | 
            -
                    fn = text2audio,
         | 
| 232 | 
            -
            	    inputs = [
         | 
| 233 | 
            -
                        input_text,
         | 
| 234 | 
            -
                        output_number,
         | 
| 235 | 
            -
                        denoising_steps,
         | 
| 236 | 
            -
                        guidance_scale,
         | 
| 237 | 
            -
                        randomize_seed,
         | 
| 238 | 
            -
                        seed
         | 
| 239 | 
            -
                    ],
         | 
| 240 | 
            -
            	    outputs = [
         | 
| 241 | 
            -
                        output_audio_1,
         | 
| 242 | 
            -
                        output_audio_2,
         | 
| 243 | 
            -
                        output_audio_3,
         | 
| 244 | 
            -
                        information
         | 
| 245 | 
            -
                    ],
         | 
| 246 | 
            -
                    examples = [
         | 
| 247 | 
            -
                            ["A hammer is hitting a wooden surface", 3, 100, 3, False, 123],
         | 
| 248 | 
            -
                            ["Peaceful and calming ambient music with singing bowl and other instruments.", 3, 100, 3, False, 123],
         | 
| 249 | 
            -
                            ["A man is speaking in a small room.", 2, 100, 3, False, 123],
         | 
| 250 | 
            -
                            ["A female is speaking followed by footstep sound", 1, 100, 3, False, 123],
         | 
| 251 | 
            -
                            ["Wooden table tapping sound followed by water pouring sound.", 3, 200, 3, False, 123],
         | 
| 252 | 
            -
                        ],
         | 
| 253 | 
            -
                    cache_examples = "lazy" if is_space_imported else False,
         | 
| 254 | 
            -
                )
         | 
| 255 | 
            -
                
         | 
| 256 | 
            -
                gr.Markdown(
         | 
| 257 | 
            -
                    """
         | 
| 258 | 
            -
                    ## How to prompt your sound
         | 
| 259 | 
            -
                    You can use round brackets to increase the importance of a part:
         | 
| 260 | 
            -
                    ```
         | 
| 261 | 
            -
                    Peaceful and (calming) ambient music with singing bowl and other instruments
         | 
| 262 | 
            -
                    ```
         | 
| 263 | 
            -
                    You can use several levels of round brackets to even more increase the importance of a part:
         | 
| 264 | 
            -
                    ```
         | 
| 265 | 
            -
                    (Peaceful) and ((calming)) ambient music with singing bowl and other instruments
         | 
| 266 | 
            -
                    ```
         | 
| 267 | 
            -
                    You can use number instead of several round brackets:
         | 
| 268 | 
            -
                    ```
         | 
| 269 | 
            -
                    (Peaceful:1.5) and ((calming)) ambient music with singing bowl and other instruments
         | 
| 270 | 
            -
                    ```
         | 
| 271 | 
            -
                    You can do the same thing with square brackets to decrease the importance of a part:
         | 
| 272 | 
            -
                    ```
         | 
| 273 | 
            -
                    (Peaceful:1.5) and ((calming)) ambient music with [singing:2] bowl and other instruments
         | 
| 274 | 
            -
                    """
         | 
| 275 | 
            -
                )
         | 
| 276 | 
            -
             | 
| 277 | 
            -
                if __name__ == "__main__":
         | 
| 278 | 
            -
                    interface.launch(share = False)
         | 
|  | |
| 1 | 
            +
            import numpy as np
         | 
|  | |
| 2 | 
             
            import torch
         | 
| 3 | 
            +
            import torch.nn.functional as F
         | 
| 4 | 
            +
            from torchvision.transforms.functional import normalize
         | 
| 5 | 
            +
            from huggingface_hub import hf_hub_download
         | 
| 6 | 
            +
            import gradio as gr
         | 
| 7 | 
            +
            from gradio_imageslider import ImageSlider
         | 
| 8 | 
            +
            from briarmbg import BriaRMBG
         | 
| 9 | 
            +
            import PIL
         | 
| 10 | 
            +
            from PIL import Image
         | 
| 11 | 
            +
            from typing import Tuple
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            net=BriaRMBG()
         | 
| 14 | 
            +
            # model_path = "./model1.pth"
         | 
| 15 | 
            +
            #model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
         | 
| 16 | 
            +
            model_path = hf_hub_download("cocktailpeanut/gbmr", 'model.pth')
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 17 | 
             
            if torch.cuda.is_available():
         | 
| 18 | 
            +
                net.load_state_dict(torch.load(model_path))
         | 
| 19 | 
            +
                net=net.cuda()
         | 
| 20 | 
            +
                device = "cuda"
         | 
| 21 | 
            +
            elif torch.backends.mps.is_available():
         | 
| 22 | 
            +
                net.load_state_dict(torch.load(model_path,map_location="mps"))
         | 
| 23 | 
            +
                net=net.to("mps")
         | 
| 24 | 
            +
                device = "mps"
         | 
| 25 | 
             
            else:
         | 
| 26 | 
            +
                net.load_state_dict(torch.load(model_path,map_location="cpu"))
         | 
| 27 | 
            +
                device = "cpu"
         | 
| 28 | 
            +
            net.eval() 
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 29 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 30 |  | 
| 31 | 
            +
            def resize_image(image):
         | 
| 32 | 
            +
                image = image.convert('RGB')
         | 
| 33 | 
            +
                model_input_size = (1024, 1024)
         | 
| 34 | 
            +
                image = image.resize(model_input_size, Image.BILINEAR)
         | 
| 35 | 
            +
                return image
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            def process(image):
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                # prepare input
         | 
| 41 | 
            +
                orig_image = Image.fromarray(image)
         | 
| 42 | 
            +
                w,h = orig_im_size = orig_image.size
         | 
| 43 | 
            +
                image = resize_image(orig_image)
         | 
| 44 | 
            +
                im_np = np.array(image)
         | 
| 45 | 
            +
                im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
         | 
| 46 | 
            +
                im_tensor = torch.unsqueeze(im_tensor,0)
         | 
| 47 | 
            +
                im_tensor = torch.divide(im_tensor,255.0)
         | 
| 48 | 
            +
                im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
         | 
| 49 | 
            +
                if device == "cuda":
         | 
| 50 | 
            +
                    im_tensor=im_tensor.cuda()
         | 
| 51 | 
            +
                elif device == "mps":
         | 
| 52 | 
            +
                    im_tensor=im_tensor.to("mps")
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                #inference
         | 
| 55 | 
            +
                result=net(im_tensor)
         | 
| 56 | 
            +
                # post process
         | 
| 57 | 
            +
                result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
         | 
| 58 | 
            +
                ma = torch.max(result)
         | 
| 59 | 
            +
                mi = torch.min(result)
         | 
| 60 | 
            +
                result = (result-mi)/(ma-mi)    
         | 
| 61 | 
            +
                # image to pil
         | 
| 62 | 
            +
                im_array = (result*255).cpu().data.numpy().astype(np.uint8)
         | 
| 63 | 
            +
                pil_im = Image.fromarray(np.squeeze(im_array))
         | 
| 64 | 
            +
                # paste the mask on the original image
         | 
| 65 | 
            +
                new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
         | 
| 66 | 
            +
                new_im.paste(orig_image, mask=pil_im)
         | 
| 67 | 
            +
                # new_orig_image = orig_image.convert('RGBA')
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                return new_im
         | 
| 70 | 
            +
                # return [new_orig_image, new_im]
         | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
            # block = gr.Blocks().queue()
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            # with block:
         | 
| 76 | 
            +
            #     gr.Markdown("## BRIA RMBG 1.4")
         | 
| 77 | 
            +
            #     gr.HTML('''
         | 
| 78 | 
            +
            #       <p style="margin-bottom: 10px; font-size: 94%">
         | 
| 79 | 
            +
            #         This is a demo for BRIA RMBG 1.4 that using
         | 
| 80 | 
            +
            #         <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone. 
         | 
| 81 | 
            +
            #       </p>
         | 
| 82 | 
            +
            #     ''')
         | 
| 83 | 
            +
            #     with gr.Row():
         | 
| 84 | 
            +
            #         with gr.Column():
         | 
| 85 | 
            +
            #             input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
         | 
| 86 | 
            +
            #             # input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam
         | 
| 87 | 
            +
            #             run_button = gr.Button(value="Run")
         | 
| 88 | 
            +
                        
         | 
| 89 | 
            +
            #         with gr.Column():
         | 
| 90 | 
            +
            #             result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
         | 
| 91 | 
            +
            #     ips = [input_image]
         | 
| 92 | 
            +
            #     run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            # block.launch(debug = True)
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            # block = gr.Blocks().queue()
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            gr.Markdown("## BRIA RMBG 1.4")
         | 
| 99 | 
            +
            gr.HTML('''
         | 
| 100 | 
            +
              <p style="margin-bottom: 10px; font-size: 94%">
         | 
| 101 | 
            +
                This is a demo for BRIA RMBG 1.4 that using
         | 
| 102 | 
            +
                <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone. 
         | 
| 103 | 
            +
              </p>
         | 
| 104 | 
            +
            ''')
         | 
| 105 | 
            +
            title = "Background Removal"
         | 
| 106 | 
            +
            description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br> 
         | 
| 107 | 
            +
            For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
         | 
| 108 | 
            +
            """
         | 
| 109 | 
            +
            examples = [['./input.jpg'],]
         | 
| 110 | 
            +
            # output = ImageSlider(position=0.5,label='Image without background', type="pil", show_download_button=True)
         | 
| 111 | 
            +
            # demo = gr.Interface(fn=process,inputs="image", outputs=output, examples=examples, title=title, description=description)
         | 
| 112 | 
            +
            demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            if __name__ == "__main__":
         | 
| 115 | 
            +
                demo.launch(share=False)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        briarmbg.py
    ADDED
    
    | @@ -0,0 +1,455 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import torch.nn as nn
         | 
| 3 | 
            +
            import torch.nn.functional as F
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            class REBNCONV(nn.Module):
         | 
| 6 | 
            +
                def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
         | 
| 7 | 
            +
                    super(REBNCONV,self).__init__()
         | 
| 8 | 
            +
             | 
| 9 | 
            +
                    self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
         | 
| 10 | 
            +
                    self.bn_s1 = nn.BatchNorm2d(out_ch)
         | 
| 11 | 
            +
                    self.relu_s1 = nn.ReLU(inplace=True)
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                def forward(self,x):
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                    hx = x
         | 
| 16 | 
            +
                    xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                    return xout
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            ## upsample tensor 'src' to have the same spatial size with tensor 'tar'
         | 
| 21 | 
            +
            def _upsample_like(src,tar):
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                src = F.interpolate(src,size=tar.shape[2:],mode='bilinear')
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                return src
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            ### RSU-7 ###
         | 
| 29 | 
            +
            class RSU7(nn.Module):
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
         | 
| 32 | 
            +
                    super(RSU7,self).__init__()
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    self.in_ch = in_ch
         | 
| 35 | 
            +
                    self.mid_ch = mid_ch
         | 
| 36 | 
            +
                    self.out_ch = out_ch
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                    self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                    self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
         | 
| 41 | 
            +
                    self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                    self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 44 | 
            +
                    self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                    self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 47 | 
            +
                    self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                    self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 50 | 
            +
                    self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                    self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 53 | 
            +
                    self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                    self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 60 | 
            +
                    self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 61 | 
            +
                    self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 62 | 
            +
                    self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 63 | 
            +
                    self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 64 | 
            +
                    self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                def forward(self,x):
         | 
| 67 | 
            +
                    b, c, h, w = x.shape
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    hx = x
         | 
| 70 | 
            +
                    hxin = self.rebnconvin(hx)
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                    hx1 = self.rebnconv1(hxin)
         | 
| 73 | 
            +
                    hx = self.pool1(hx1)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    hx2 = self.rebnconv2(hx)
         | 
| 76 | 
            +
                    hx = self.pool2(hx2)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    hx3 = self.rebnconv3(hx)
         | 
| 79 | 
            +
                    hx = self.pool3(hx3)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                    hx4 = self.rebnconv4(hx)
         | 
| 82 | 
            +
                    hx = self.pool4(hx4)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                    hx5 = self.rebnconv5(hx)
         | 
| 85 | 
            +
                    hx = self.pool5(hx5)
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    hx6 = self.rebnconv6(hx)
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    hx7 = self.rebnconv7(hx6)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    hx6d =  self.rebnconv6d(torch.cat((hx7,hx6),1))
         | 
| 92 | 
            +
                    hx6dup = _upsample_like(hx6d,hx5)
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    hx5d =  self.rebnconv5d(torch.cat((hx6dup,hx5),1))
         | 
| 95 | 
            +
                    hx5dup = _upsample_like(hx5d,hx4)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
         | 
| 98 | 
            +
                    hx4dup = _upsample_like(hx4d,hx3)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
         | 
| 101 | 
            +
                    hx3dup = _upsample_like(hx3d,hx2)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
         | 
| 104 | 
            +
                    hx2dup = _upsample_like(hx2d,hx1)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    return hx1d + hxin
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            ### RSU-6 ###
         | 
| 112 | 
            +
            class RSU6(nn.Module):
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
         | 
| 115 | 
            +
                    super(RSU6,self).__init__()
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
         | 
| 120 | 
            +
                    self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 123 | 
            +
                    self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 126 | 
            +
                    self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 129 | 
            +
                    self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 136 | 
            +
                    self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 137 | 
            +
                    self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 138 | 
            +
                    self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 139 | 
            +
                    self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                def forward(self,x):
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    hx = x
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    hxin = self.rebnconvin(hx)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    hx1 = self.rebnconv1(hxin)
         | 
| 148 | 
            +
                    hx = self.pool1(hx1)
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    hx2 = self.rebnconv2(hx)
         | 
| 151 | 
            +
                    hx = self.pool2(hx2)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    hx3 = self.rebnconv3(hx)
         | 
| 154 | 
            +
                    hx = self.pool3(hx3)
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    hx4 = self.rebnconv4(hx)
         | 
| 157 | 
            +
                    hx = self.pool4(hx4)
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    hx5 = self.rebnconv5(hx)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    hx6 = self.rebnconv6(hx5)
         | 
| 162 | 
            +
             | 
| 163 | 
            +
             | 
| 164 | 
            +
                    hx5d =  self.rebnconv5d(torch.cat((hx6,hx5),1))
         | 
| 165 | 
            +
                    hx5dup = _upsample_like(hx5d,hx4)
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
         | 
| 168 | 
            +
                    hx4dup = _upsample_like(hx4d,hx3)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
         | 
| 171 | 
            +
                    hx3dup = _upsample_like(hx3d,hx2)
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
         | 
| 174 | 
            +
                    hx2dup = _upsample_like(hx2d,hx1)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                    hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                    return hx1d + hxin
         | 
| 179 | 
            +
             | 
| 180 | 
            +
            ### RSU-5 ###
         | 
| 181 | 
            +
            class RSU5(nn.Module):
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
         | 
| 184 | 
            +
                    super(RSU5,self).__init__()
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
         | 
| 189 | 
            +
                    self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                    self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 192 | 
            +
                    self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                    self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 195 | 
            +
                    self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 202 | 
            +
                    self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 203 | 
            +
                    self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 204 | 
            +
                    self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                def forward(self,x):
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    hx = x
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    hxin = self.rebnconvin(hx)
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    hx1 = self.rebnconv1(hxin)
         | 
| 213 | 
            +
                    hx = self.pool1(hx1)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    hx2 = self.rebnconv2(hx)
         | 
| 216 | 
            +
                    hx = self.pool2(hx2)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    hx3 = self.rebnconv3(hx)
         | 
| 219 | 
            +
                    hx = self.pool3(hx3)
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    hx4 = self.rebnconv4(hx)
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    hx5 = self.rebnconv5(hx4)
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
         | 
| 226 | 
            +
                    hx4dup = _upsample_like(hx4d,hx3)
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
         | 
| 229 | 
            +
                    hx3dup = _upsample_like(hx3d,hx2)
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                    hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
         | 
| 232 | 
            +
                    hx2dup = _upsample_like(hx2d,hx1)
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                    hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                    return hx1d + hxin
         | 
| 237 | 
            +
             | 
| 238 | 
            +
            ### RSU-4 ###
         | 
| 239 | 
            +
            class RSU4(nn.Module):
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
         | 
| 242 | 
            +
                    super(RSU4,self).__init__()
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
         | 
| 247 | 
            +
                    self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                    self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 250 | 
            +
                    self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 257 | 
            +
                    self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
         | 
| 258 | 
            +
                    self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                def forward(self,x):
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    hx = x
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                    hxin = self.rebnconvin(hx)
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    hx1 = self.rebnconv1(hxin)
         | 
| 267 | 
            +
                    hx = self.pool1(hx1)
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    hx2 = self.rebnconv2(hx)
         | 
| 270 | 
            +
                    hx = self.pool2(hx2)
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    hx3 = self.rebnconv3(hx)
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                    hx4 = self.rebnconv4(hx3)
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
         | 
| 277 | 
            +
                    hx3dup = _upsample_like(hx3d,hx2)
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
         | 
| 280 | 
            +
                    hx2dup = _upsample_like(hx2d,hx1)
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                    hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                    return hx1d + hxin
         | 
| 285 | 
            +
             | 
| 286 | 
            +
            ### RSU-4F ###
         | 
| 287 | 
            +
            class RSU4F(nn.Module):
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
         | 
| 290 | 
            +
                    super(RSU4F,self).__init__()
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                    self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
         | 
| 295 | 
            +
                    self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
         | 
| 296 | 
            +
                    self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
         | 
| 301 | 
            +
                    self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
         | 
| 302 | 
            +
                    self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                def forward(self,x):
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    hx = x
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    hxin = self.rebnconvin(hx)
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                    hx1 = self.rebnconv1(hxin)
         | 
| 311 | 
            +
                    hx2 = self.rebnconv2(hx1)
         | 
| 312 | 
            +
                    hx3 = self.rebnconv3(hx2)
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    hx4 = self.rebnconv4(hx3)
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
         | 
| 317 | 
            +
                    hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
         | 
| 318 | 
            +
                    hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    return hx1d + hxin
         | 
| 321 | 
            +
             | 
| 322 | 
            +
             | 
| 323 | 
            +
            class myrebnconv(nn.Module):
         | 
| 324 | 
            +
                def __init__(self, in_ch=3,
         | 
| 325 | 
            +
                                   out_ch=1,
         | 
| 326 | 
            +
                                   kernel_size=3,
         | 
| 327 | 
            +
                                   stride=1,
         | 
| 328 | 
            +
                                   padding=1,
         | 
| 329 | 
            +
                                   dilation=1,
         | 
| 330 | 
            +
                                   groups=1):
         | 
| 331 | 
            +
                    super(myrebnconv,self).__init__()
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                    self.conv = nn.Conv2d(in_ch,
         | 
| 334 | 
            +
                                          out_ch,
         | 
| 335 | 
            +
                                          kernel_size=kernel_size,
         | 
| 336 | 
            +
                                          stride=stride,
         | 
| 337 | 
            +
                                          padding=padding,
         | 
| 338 | 
            +
                                          dilation=dilation,
         | 
| 339 | 
            +
                                          groups=groups)
         | 
| 340 | 
            +
                    self.bn = nn.BatchNorm2d(out_ch)
         | 
| 341 | 
            +
                    self.rl = nn.ReLU(inplace=True)
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                def forward(self,x):
         | 
| 344 | 
            +
                    return self.rl(self.bn(self.conv(x)))
         | 
| 345 | 
            +
             | 
| 346 | 
            +
             | 
| 347 | 
            +
            class BriaRMBG(nn.Module):
         | 
| 348 | 
            +
             | 
| 349 | 
            +
                def __init__(self,in_ch=3,out_ch=1):
         | 
| 350 | 
            +
                    super(BriaRMBG,self).__init__()
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                    self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
         | 
| 353 | 
            +
                    self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                    self.stage1 = RSU7(64,32,64)
         | 
| 356 | 
            +
                    self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                    self.stage2 = RSU6(64,32,128)
         | 
| 359 | 
            +
                    self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    self.stage3 = RSU5(128,64,256)
         | 
| 362 | 
            +
                    self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    self.stage4 = RSU4(256,128,512)
         | 
| 365 | 
            +
                    self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                    self.stage5 = RSU4F(512,256,512)
         | 
| 368 | 
            +
                    self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                    self.stage6 = RSU4F(512,256,512)
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                    # decoder
         | 
| 373 | 
            +
                    self.stage5d = RSU4F(1024,256,512)
         | 
| 374 | 
            +
                    self.stage4d = RSU4(1024,128,256)
         | 
| 375 | 
            +
                    self.stage3d = RSU5(512,64,128)
         | 
| 376 | 
            +
                    self.stage2d = RSU6(256,32,64)
         | 
| 377 | 
            +
                    self.stage1d = RSU7(128,16,64)
         | 
| 378 | 
            +
             | 
| 379 | 
            +
                    self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
         | 
| 380 | 
            +
                    self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
         | 
| 381 | 
            +
                    self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
         | 
| 382 | 
            +
                    self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
         | 
| 383 | 
            +
                    self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
         | 
| 384 | 
            +
                    self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    # self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                def forward(self,x):
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                    hx = x
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    hxin = self.conv_in(hx)
         | 
| 393 | 
            +
                    #hx = self.pool_in(hxin)
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                    #stage 1
         | 
| 396 | 
            +
                    hx1 = self.stage1(hxin)
         | 
| 397 | 
            +
                    hx = self.pool12(hx1)
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    #stage 2
         | 
| 400 | 
            +
                    hx2 = self.stage2(hx)
         | 
| 401 | 
            +
                    hx = self.pool23(hx2)
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                    #stage 3
         | 
| 404 | 
            +
                    hx3 = self.stage3(hx)
         | 
| 405 | 
            +
                    hx = self.pool34(hx3)
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    #stage 4
         | 
| 408 | 
            +
                    hx4 = self.stage4(hx)
         | 
| 409 | 
            +
                    hx = self.pool45(hx4)
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                    #stage 5
         | 
| 412 | 
            +
                    hx5 = self.stage5(hx)
         | 
| 413 | 
            +
                    hx = self.pool56(hx5)
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                    #stage 6
         | 
| 416 | 
            +
                    hx6 = self.stage6(hx)
         | 
| 417 | 
            +
                    hx6up = _upsample_like(hx6,hx5)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    #-------------------- decoder --------------------
         | 
| 420 | 
            +
                    hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
         | 
| 421 | 
            +
                    hx5dup = _upsample_like(hx5d,hx4)
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
         | 
| 424 | 
            +
                    hx4dup = _upsample_like(hx4d,hx3)
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                    hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
         | 
| 427 | 
            +
                    hx3dup = _upsample_like(hx3d,hx2)
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                    hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
         | 
| 430 | 
            +
                    hx2dup = _upsample_like(hx2d,hx1)
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                    hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
         | 
| 433 | 
            +
             | 
| 434 | 
            +
             | 
| 435 | 
            +
                    #side output
         | 
| 436 | 
            +
                    d1 = self.side1(hx1d)
         | 
| 437 | 
            +
                    d1 = _upsample_like(d1,x)
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                    d2 = self.side2(hx2d)
         | 
| 440 | 
            +
                    d2 = _upsample_like(d2,x)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    d3 = self.side3(hx3d)
         | 
| 443 | 
            +
                    d3 = _upsample_like(d3,x)
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    d4 = self.side4(hx4d)
         | 
| 446 | 
            +
                    d4 = _upsample_like(d4,x)
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                    d5 = self.side5(hx5d)
         | 
| 449 | 
            +
                    d5 = _upsample_like(d5,x)
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    d6 = self.side6(hx6)
         | 
| 452 | 
            +
                    d6 = _upsample_like(d6,x)
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                    return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
         | 
| 455 | 
            +
             | 
    	
        foo.py
    ADDED
    
    | @@ -0,0 +1,2 @@ | |
|  | |
|  | 
|  | |
| 1 | 
            +
            def hello():
         | 
| 2 | 
            +
                print("hello world")
         | 
    	
        input.jpg
    ADDED
    
    |   | 
    	
        requirements.txt
    CHANGED
    
    | @@ -1,26 +1,9 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
             | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
| 5 | 
            -
             | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
            librosa==0.9.2
         | 
| 11 | 
            -
            matplotlib==3.9.0
         | 
| 12 | 
            -
            numpy==1.23.0
         | 
| 13 | 
            -
            omegaconf==2.3.0
         | 
| 14 | 
            -
            packaging==24.1
         | 
| 15 | 
            -
            progressbar33==2.4
         | 
| 16 | 
            -
            protobuf==3.20.*
         | 
| 17 | 
            -
            safetensors==0.4.4
         | 
| 18 | 
            -
            sentencepiece==0.1.99
         | 
| 19 | 
            -
            scipy==1.8.0
         | 
| 20 | 
            -
            soundfile==0.12.1
         | 
| 21 | 
            -
            torchlibrosa==0.1.0
         | 
| 22 | 
            -
            tqdm==4.63.1
         | 
| 23 | 
            -
            wandb==0.12.14
         | 
| 24 | 
            -
            ipython==8.12.0
         | 
| 25 | 
            -
            gradio==4.3.0
         | 
| 26 | 
            -
            wavio==0.0.7
         | 
|  | |
| 1 | 
            +
            gradio==4.16.0
         | 
| 2 | 
            +
            gradio_imageslider
         | 
| 3 | 
            +
            #torch
         | 
| 4 | 
            +
            #torchvision
         | 
| 5 | 
            +
            pillow
         | 
| 6 | 
            +
            numpy
         | 
| 7 | 
            +
            typing
         | 
| 8 | 
            +
            gitpython
         | 
| 9 | 
            +
            huggingface_hub
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
