Spaces:
Runtime error
Runtime error
Add working files
Browse files- README.md +7 -12
- app.py +110 -273
- briarmbg.py +455 -0
- foo.py +2 -0
- input.jpg +0 -0
- requirements.txt +9 -26
README.md
CHANGED
|
@@ -1,18 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
tags:
|
| 7 |
-
- sound generation
|
| 8 |
-
- language models
|
| 9 |
-
- LLMs
|
| 10 |
sdk: gradio
|
| 11 |
-
sdk_version: 4.
|
| 12 |
app_file: app.py
|
| 13 |
pinned: false
|
| 14 |
-
license:
|
| 15 |
-
short_description: Sound effect from description
|
| 16 |
---
|
| 17 |
|
| 18 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: BRIA RMBG 1.4
|
| 3 |
+
emoji: 💻
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: red
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.16.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: other
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,278 +1,115 @@
|
|
| 1 |
-
import
|
| 2 |
-
import json
|
| 3 |
import torch
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
from pydub import AudioSegment
|
| 19 |
-
|
| 20 |
-
max_64_bit_int = 2**63 - 1
|
| 21 |
-
|
| 22 |
-
# Automatic device detection
|
| 23 |
if torch.cuda.is_available():
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
else:
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
class Tango:
|
| 31 |
-
def __init__(self, name = "declare-lab/tango2", device = device_selection):
|
| 32 |
-
|
| 33 |
-
path = snapshot_download(repo_id = name)
|
| 34 |
-
|
| 35 |
-
vae_config = json.load(open("{}/vae_config.json".format(path)))
|
| 36 |
-
stft_config = json.load(open("{}/stft_config.json".format(path)))
|
| 37 |
-
main_config = json.load(open("{}/main_config.json".format(path)))
|
| 38 |
-
|
| 39 |
-
self.vae = AutoencoderKL(**vae_config).to(device)
|
| 40 |
-
self.stft = TacotronSTFT(**stft_config).to(device)
|
| 41 |
-
self.model = AudioDiffusion(**main_config).to(device)
|
| 42 |
-
|
| 43 |
-
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device)
|
| 44 |
-
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device)
|
| 45 |
-
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device)
|
| 46 |
-
|
| 47 |
-
self.vae.load_state_dict(vae_weights)
|
| 48 |
-
self.stft.load_state_dict(stft_weights)
|
| 49 |
-
self.model.load_state_dict(main_weights)
|
| 50 |
|
| 51 |
-
print ("Successfully loaded checkpoint from:", name)
|
| 52 |
-
|
| 53 |
-
self.vae.eval()
|
| 54 |
-
self.stft.eval()
|
| 55 |
-
self.model.eval()
|
| 56 |
-
|
| 57 |
-
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
|
| 58 |
-
|
| 59 |
-
def chunks(self, lst, n):
|
| 60 |
-
# Yield successive n-sized chunks from a list
|
| 61 |
-
for i in range(0, len(lst), n):
|
| 62 |
-
yield lst[i:i + n]
|
| 63 |
-
|
| 64 |
-
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
|
| 65 |
-
# Generate audio for a single prompt string
|
| 66 |
-
with torch.no_grad():
|
| 67 |
-
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
|
| 68 |
-
mel = self.vae.decode_first_stage(latents)
|
| 69 |
-
wave = self.vae.decode_to_waveform(mel)
|
| 70 |
-
return wave
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
# Gradio interface
|
| 158 |
-
with gr.Blocks() as interface:
|
| 159 |
-
gr.Markdown("""
|
| 160 |
-
<p style="text-align: center;">
|
| 161 |
-
<b><big><big><big>Text-to-Audio</big></big></big></b>
|
| 162 |
-
<br/>Generates 10 seconds of sound effects from description, freely, without account, without watermark
|
| 163 |
-
</p>
|
| 164 |
-
<br/>
|
| 165 |
-
<br/>
|
| 166 |
-
✨ Powered by <i>Tango 2</i> AI.
|
| 167 |
-
<br/>
|
| 168 |
-
<ul>
|
| 169 |
-
<li>If you need <b>47 seconds</b> of audio, I recommend to use <i>Stable Audio</i>,</li>
|
| 170 |
-
<li>If you need to generate <b>music</b>, I recommend to use <i>MusicGen</i>,</li>
|
| 171 |
-
</ul>
|
| 172 |
-
<br/>
|
| 173 |
-
""" + ("🏃♀️ Estimated time: few minutes. Current device: GPU." if torch.cuda.is_available() else "🐌 Slow process... ~5 min. Current device: CPU.") + """
|
| 174 |
-
Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it's designed to work on CPU, GPU and ZeroGPU.<br/>
|
| 175 |
-
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true&hidden=public&hidden=public'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
|
| 176 |
-
<br/>
|
| 177 |
-
⚖️ You can use, modify and share the generated sounds but not for commercial uses.
|
| 178 |
-
"""
|
| 179 |
-
)
|
| 180 |
-
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
|
| 181 |
-
with gr.Accordion("Advanced options", open = False):
|
| 182 |
-
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
|
| 183 |
-
output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 1, step = 1, interactive = True)
|
| 184 |
-
denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 10, maximum = 200, value = 10, step = 1, interactive = True)
|
| 185 |
-
guidance_scale = gr.Slider(label = "Guidance Scale", info = "lower=audio quality, higher=follow the prompt", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True)
|
| 186 |
-
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
|
| 187 |
-
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
|
| 188 |
-
|
| 189 |
-
submit = gr.Button("🚀 Generate", variant = "primary")
|
| 190 |
-
|
| 191 |
-
output_audio_1 = gr.Audio(label = "Generated Audio #1/3", format = "wav", type="numpy", autoplay = True)
|
| 192 |
-
output_audio_2 = gr.Audio(label = "Generated Audio #2/3", format = "wav", type="numpy")
|
| 193 |
-
output_audio_3 = gr.Audio(label = "Generated Audio #3/3", format = "wav", type="numpy")
|
| 194 |
-
information = gr.Label(label = "Information")
|
| 195 |
-
|
| 196 |
-
submit.click(fn = update_seed, inputs = [
|
| 197 |
-
randomize_seed,
|
| 198 |
-
seed
|
| 199 |
-
], outputs = [
|
| 200 |
-
seed
|
| 201 |
-
], queue = False, show_progress = False).then(fn = check, inputs = [
|
| 202 |
-
input_text,
|
| 203 |
-
output_number,
|
| 204 |
-
denoising_steps,
|
| 205 |
-
guidance_scale,
|
| 206 |
-
randomize_seed,
|
| 207 |
-
seed
|
| 208 |
-
], outputs = [], queue = False, show_progress = False).success(fn = update_output, inputs = [
|
| 209 |
-
output_format,
|
| 210 |
-
output_number
|
| 211 |
-
], outputs = [
|
| 212 |
-
output_audio_1,
|
| 213 |
-
output_audio_2,
|
| 214 |
-
output_audio_3,
|
| 215 |
-
information
|
| 216 |
-
], queue = False, show_progress = False).success(fn = text2audio, inputs = [
|
| 217 |
-
input_text,
|
| 218 |
-
output_number,
|
| 219 |
-
denoising_steps,
|
| 220 |
-
guidance_scale,
|
| 221 |
-
randomize_seed,
|
| 222 |
-
seed
|
| 223 |
-
], outputs = [
|
| 224 |
-
output_audio_1,
|
| 225 |
-
output_audio_2,
|
| 226 |
-
output_audio_3,
|
| 227 |
-
information
|
| 228 |
-
], scroll_to_output = True)
|
| 229 |
-
|
| 230 |
-
gr.Examples(
|
| 231 |
-
fn = text2audio,
|
| 232 |
-
inputs = [
|
| 233 |
-
input_text,
|
| 234 |
-
output_number,
|
| 235 |
-
denoising_steps,
|
| 236 |
-
guidance_scale,
|
| 237 |
-
randomize_seed,
|
| 238 |
-
seed
|
| 239 |
-
],
|
| 240 |
-
outputs = [
|
| 241 |
-
output_audio_1,
|
| 242 |
-
output_audio_2,
|
| 243 |
-
output_audio_3,
|
| 244 |
-
information
|
| 245 |
-
],
|
| 246 |
-
examples = [
|
| 247 |
-
["A hammer is hitting a wooden surface", 3, 100, 3, False, 123],
|
| 248 |
-
["Peaceful and calming ambient music with singing bowl and other instruments.", 3, 100, 3, False, 123],
|
| 249 |
-
["A man is speaking in a small room.", 2, 100, 3, False, 123],
|
| 250 |
-
["A female is speaking followed by footstep sound", 1, 100, 3, False, 123],
|
| 251 |
-
["Wooden table tapping sound followed by water pouring sound.", 3, 200, 3, False, 123],
|
| 252 |
-
],
|
| 253 |
-
cache_examples = "lazy" if is_space_imported else False,
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
gr.Markdown(
|
| 257 |
-
"""
|
| 258 |
-
## How to prompt your sound
|
| 259 |
-
You can use round brackets to increase the importance of a part:
|
| 260 |
-
```
|
| 261 |
-
Peaceful and (calming) ambient music with singing bowl and other instruments
|
| 262 |
-
```
|
| 263 |
-
You can use several levels of round brackets to even more increase the importance of a part:
|
| 264 |
-
```
|
| 265 |
-
(Peaceful) and ((calming)) ambient music with singing bowl and other instruments
|
| 266 |
-
```
|
| 267 |
-
You can use number instead of several round brackets:
|
| 268 |
-
```
|
| 269 |
-
(Peaceful:1.5) and ((calming)) ambient music with singing bowl and other instruments
|
| 270 |
-
```
|
| 271 |
-
You can do the same thing with square brackets to decrease the importance of a part:
|
| 272 |
-
```
|
| 273 |
-
(Peaceful:1.5) and ((calming)) ambient music with [singing:2] bowl and other instruments
|
| 274 |
-
"""
|
| 275 |
-
)
|
| 276 |
-
|
| 277 |
-
if __name__ == "__main__":
|
| 278 |
-
interface.launch(share = False)
|
|
|
|
| 1 |
+
import numpy as np
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torchvision.transforms.functional import normalize
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from gradio_imageslider import ImageSlider
|
| 8 |
+
from briarmbg import BriaRMBG
|
| 9 |
+
import PIL
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from typing import Tuple
|
| 12 |
+
|
| 13 |
+
net=BriaRMBG()
|
| 14 |
+
# model_path = "./model1.pth"
|
| 15 |
+
#model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
|
| 16 |
+
model_path = hf_hub_download("cocktailpeanut/gbmr", 'model.pth')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
if torch.cuda.is_available():
|
| 18 |
+
net.load_state_dict(torch.load(model_path))
|
| 19 |
+
net=net.cuda()
|
| 20 |
+
device = "cuda"
|
| 21 |
+
elif torch.backends.mps.is_available():
|
| 22 |
+
net.load_state_dict(torch.load(model_path,map_location="mps"))
|
| 23 |
+
net=net.to("mps")
|
| 24 |
+
device = "mps"
|
| 25 |
else:
|
| 26 |
+
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
| 27 |
+
device = "cpu"
|
| 28 |
+
net.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
def resize_image(image):
|
| 32 |
+
image = image.convert('RGB')
|
| 33 |
+
model_input_size = (1024, 1024)
|
| 34 |
+
image = image.resize(model_input_size, Image.BILINEAR)
|
| 35 |
+
return image
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def process(image):
|
| 39 |
+
|
| 40 |
+
# prepare input
|
| 41 |
+
orig_image = Image.fromarray(image)
|
| 42 |
+
w,h = orig_im_size = orig_image.size
|
| 43 |
+
image = resize_image(orig_image)
|
| 44 |
+
im_np = np.array(image)
|
| 45 |
+
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
|
| 46 |
+
im_tensor = torch.unsqueeze(im_tensor,0)
|
| 47 |
+
im_tensor = torch.divide(im_tensor,255.0)
|
| 48 |
+
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
| 49 |
+
if device == "cuda":
|
| 50 |
+
im_tensor=im_tensor.cuda()
|
| 51 |
+
elif device == "mps":
|
| 52 |
+
im_tensor=im_tensor.to("mps")
|
| 53 |
+
|
| 54 |
+
#inference
|
| 55 |
+
result=net(im_tensor)
|
| 56 |
+
# post process
|
| 57 |
+
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
|
| 58 |
+
ma = torch.max(result)
|
| 59 |
+
mi = torch.min(result)
|
| 60 |
+
result = (result-mi)/(ma-mi)
|
| 61 |
+
# image to pil
|
| 62 |
+
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
|
| 63 |
+
pil_im = Image.fromarray(np.squeeze(im_array))
|
| 64 |
+
# paste the mask on the original image
|
| 65 |
+
new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
| 66 |
+
new_im.paste(orig_image, mask=pil_im)
|
| 67 |
+
# new_orig_image = orig_image.convert('RGBA')
|
| 68 |
+
|
| 69 |
+
return new_im
|
| 70 |
+
# return [new_orig_image, new_im]
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# block = gr.Blocks().queue()
|
| 74 |
+
|
| 75 |
+
# with block:
|
| 76 |
+
# gr.Markdown("## BRIA RMBG 1.4")
|
| 77 |
+
# gr.HTML('''
|
| 78 |
+
# <p style="margin-bottom: 10px; font-size: 94%">
|
| 79 |
+
# This is a demo for BRIA RMBG 1.4 that using
|
| 80 |
+
# <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
|
| 81 |
+
# </p>
|
| 82 |
+
# ''')
|
| 83 |
+
# with gr.Row():
|
| 84 |
+
# with gr.Column():
|
| 85 |
+
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
|
| 86 |
+
# # input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam
|
| 87 |
+
# run_button = gr.Button(value="Run")
|
| 88 |
+
|
| 89 |
+
# with gr.Column():
|
| 90 |
+
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
|
| 91 |
+
# ips = [input_image]
|
| 92 |
+
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
| 93 |
+
|
| 94 |
+
# block.launch(debug = True)
|
| 95 |
+
|
| 96 |
+
# block = gr.Blocks().queue()
|
| 97 |
+
|
| 98 |
+
gr.Markdown("## BRIA RMBG 1.4")
|
| 99 |
+
gr.HTML('''
|
| 100 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
| 101 |
+
This is a demo for BRIA RMBG 1.4 that using
|
| 102 |
+
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
|
| 103 |
+
</p>
|
| 104 |
+
''')
|
| 105 |
+
title = "Background Removal"
|
| 106 |
+
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
|
| 107 |
+
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
|
| 108 |
+
"""
|
| 109 |
+
examples = [['./input.jpg'],]
|
| 110 |
+
# output = ImageSlider(position=0.5,label='Image without background', type="pil", show_download_button=True)
|
| 111 |
+
# demo = gr.Interface(fn=process,inputs="image", outputs=output, examples=examples, title=title, description=description)
|
| 112 |
+
demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description)
|
| 113 |
+
|
| 114 |
+
if __name__ == "__main__":
|
| 115 |
+
demo.launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
briarmbg.py
ADDED
|
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
class REBNCONV(nn.Module):
|
| 6 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
| 7 |
+
super(REBNCONV,self).__init__()
|
| 8 |
+
|
| 9 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
|
| 10 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
| 11 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
| 12 |
+
|
| 13 |
+
def forward(self,x):
|
| 14 |
+
|
| 15 |
+
hx = x
|
| 16 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
| 17 |
+
|
| 18 |
+
return xout
|
| 19 |
+
|
| 20 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
| 21 |
+
def _upsample_like(src,tar):
|
| 22 |
+
|
| 23 |
+
src = F.interpolate(src,size=tar.shape[2:],mode='bilinear')
|
| 24 |
+
|
| 25 |
+
return src
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
### RSU-7 ###
|
| 29 |
+
class RSU7(nn.Module):
|
| 30 |
+
|
| 31 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
| 32 |
+
super(RSU7,self).__init__()
|
| 33 |
+
|
| 34 |
+
self.in_ch = in_ch
|
| 35 |
+
self.mid_ch = mid_ch
|
| 36 |
+
self.out_ch = out_ch
|
| 37 |
+
|
| 38 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
|
| 39 |
+
|
| 40 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 41 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 42 |
+
|
| 43 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 44 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 45 |
+
|
| 46 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 47 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 48 |
+
|
| 49 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 50 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 51 |
+
|
| 52 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 53 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 54 |
+
|
| 55 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 56 |
+
|
| 57 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 58 |
+
|
| 59 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 60 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 61 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 62 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 63 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 64 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 65 |
+
|
| 66 |
+
def forward(self,x):
|
| 67 |
+
b, c, h, w = x.shape
|
| 68 |
+
|
| 69 |
+
hx = x
|
| 70 |
+
hxin = self.rebnconvin(hx)
|
| 71 |
+
|
| 72 |
+
hx1 = self.rebnconv1(hxin)
|
| 73 |
+
hx = self.pool1(hx1)
|
| 74 |
+
|
| 75 |
+
hx2 = self.rebnconv2(hx)
|
| 76 |
+
hx = self.pool2(hx2)
|
| 77 |
+
|
| 78 |
+
hx3 = self.rebnconv3(hx)
|
| 79 |
+
hx = self.pool3(hx3)
|
| 80 |
+
|
| 81 |
+
hx4 = self.rebnconv4(hx)
|
| 82 |
+
hx = self.pool4(hx4)
|
| 83 |
+
|
| 84 |
+
hx5 = self.rebnconv5(hx)
|
| 85 |
+
hx = self.pool5(hx5)
|
| 86 |
+
|
| 87 |
+
hx6 = self.rebnconv6(hx)
|
| 88 |
+
|
| 89 |
+
hx7 = self.rebnconv7(hx6)
|
| 90 |
+
|
| 91 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
| 92 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
| 93 |
+
|
| 94 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
| 95 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
| 96 |
+
|
| 97 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
| 98 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 99 |
+
|
| 100 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 101 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 102 |
+
|
| 103 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 104 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 105 |
+
|
| 106 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 107 |
+
|
| 108 |
+
return hx1d + hxin
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
### RSU-6 ###
|
| 112 |
+
class RSU6(nn.Module):
|
| 113 |
+
|
| 114 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 115 |
+
super(RSU6,self).__init__()
|
| 116 |
+
|
| 117 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 118 |
+
|
| 119 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 120 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 121 |
+
|
| 122 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 123 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 124 |
+
|
| 125 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 126 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 127 |
+
|
| 128 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 129 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 130 |
+
|
| 131 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 132 |
+
|
| 133 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 134 |
+
|
| 135 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 136 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 137 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 138 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 139 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 140 |
+
|
| 141 |
+
def forward(self,x):
|
| 142 |
+
|
| 143 |
+
hx = x
|
| 144 |
+
|
| 145 |
+
hxin = self.rebnconvin(hx)
|
| 146 |
+
|
| 147 |
+
hx1 = self.rebnconv1(hxin)
|
| 148 |
+
hx = self.pool1(hx1)
|
| 149 |
+
|
| 150 |
+
hx2 = self.rebnconv2(hx)
|
| 151 |
+
hx = self.pool2(hx2)
|
| 152 |
+
|
| 153 |
+
hx3 = self.rebnconv3(hx)
|
| 154 |
+
hx = self.pool3(hx3)
|
| 155 |
+
|
| 156 |
+
hx4 = self.rebnconv4(hx)
|
| 157 |
+
hx = self.pool4(hx4)
|
| 158 |
+
|
| 159 |
+
hx5 = self.rebnconv5(hx)
|
| 160 |
+
|
| 161 |
+
hx6 = self.rebnconv6(hx5)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
| 165 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
| 166 |
+
|
| 167 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
| 168 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 169 |
+
|
| 170 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 171 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 172 |
+
|
| 173 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 174 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 175 |
+
|
| 176 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 177 |
+
|
| 178 |
+
return hx1d + hxin
|
| 179 |
+
|
| 180 |
+
### RSU-5 ###
|
| 181 |
+
class RSU5(nn.Module):
|
| 182 |
+
|
| 183 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 184 |
+
super(RSU5,self).__init__()
|
| 185 |
+
|
| 186 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 187 |
+
|
| 188 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 189 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 190 |
+
|
| 191 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 192 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 193 |
+
|
| 194 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 195 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 196 |
+
|
| 197 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 198 |
+
|
| 199 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 200 |
+
|
| 201 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 202 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 203 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 204 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 205 |
+
|
| 206 |
+
def forward(self,x):
|
| 207 |
+
|
| 208 |
+
hx = x
|
| 209 |
+
|
| 210 |
+
hxin = self.rebnconvin(hx)
|
| 211 |
+
|
| 212 |
+
hx1 = self.rebnconv1(hxin)
|
| 213 |
+
hx = self.pool1(hx1)
|
| 214 |
+
|
| 215 |
+
hx2 = self.rebnconv2(hx)
|
| 216 |
+
hx = self.pool2(hx2)
|
| 217 |
+
|
| 218 |
+
hx3 = self.rebnconv3(hx)
|
| 219 |
+
hx = self.pool3(hx3)
|
| 220 |
+
|
| 221 |
+
hx4 = self.rebnconv4(hx)
|
| 222 |
+
|
| 223 |
+
hx5 = self.rebnconv5(hx4)
|
| 224 |
+
|
| 225 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
| 226 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 227 |
+
|
| 228 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 229 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 230 |
+
|
| 231 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 232 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 233 |
+
|
| 234 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 235 |
+
|
| 236 |
+
return hx1d + hxin
|
| 237 |
+
|
| 238 |
+
### RSU-4 ###
|
| 239 |
+
class RSU4(nn.Module):
|
| 240 |
+
|
| 241 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 242 |
+
super(RSU4,self).__init__()
|
| 243 |
+
|
| 244 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 245 |
+
|
| 246 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 247 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 248 |
+
|
| 249 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 250 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 251 |
+
|
| 252 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 253 |
+
|
| 254 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 255 |
+
|
| 256 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 257 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 258 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 259 |
+
|
| 260 |
+
def forward(self,x):
|
| 261 |
+
|
| 262 |
+
hx = x
|
| 263 |
+
|
| 264 |
+
hxin = self.rebnconvin(hx)
|
| 265 |
+
|
| 266 |
+
hx1 = self.rebnconv1(hxin)
|
| 267 |
+
hx = self.pool1(hx1)
|
| 268 |
+
|
| 269 |
+
hx2 = self.rebnconv2(hx)
|
| 270 |
+
hx = self.pool2(hx2)
|
| 271 |
+
|
| 272 |
+
hx3 = self.rebnconv3(hx)
|
| 273 |
+
|
| 274 |
+
hx4 = self.rebnconv4(hx3)
|
| 275 |
+
|
| 276 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
| 277 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 278 |
+
|
| 279 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 280 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 281 |
+
|
| 282 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 283 |
+
|
| 284 |
+
return hx1d + hxin
|
| 285 |
+
|
| 286 |
+
### RSU-4F ###
|
| 287 |
+
class RSU4F(nn.Module):
|
| 288 |
+
|
| 289 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 290 |
+
super(RSU4F,self).__init__()
|
| 291 |
+
|
| 292 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 293 |
+
|
| 294 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 295 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 296 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
| 297 |
+
|
| 298 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
| 299 |
+
|
| 300 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
| 301 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
| 302 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 303 |
+
|
| 304 |
+
def forward(self,x):
|
| 305 |
+
|
| 306 |
+
hx = x
|
| 307 |
+
|
| 308 |
+
hxin = self.rebnconvin(hx)
|
| 309 |
+
|
| 310 |
+
hx1 = self.rebnconv1(hxin)
|
| 311 |
+
hx2 = self.rebnconv2(hx1)
|
| 312 |
+
hx3 = self.rebnconv3(hx2)
|
| 313 |
+
|
| 314 |
+
hx4 = self.rebnconv4(hx3)
|
| 315 |
+
|
| 316 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
| 317 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
| 318 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
| 319 |
+
|
| 320 |
+
return hx1d + hxin
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
class myrebnconv(nn.Module):
|
| 324 |
+
def __init__(self, in_ch=3,
|
| 325 |
+
out_ch=1,
|
| 326 |
+
kernel_size=3,
|
| 327 |
+
stride=1,
|
| 328 |
+
padding=1,
|
| 329 |
+
dilation=1,
|
| 330 |
+
groups=1):
|
| 331 |
+
super(myrebnconv,self).__init__()
|
| 332 |
+
|
| 333 |
+
self.conv = nn.Conv2d(in_ch,
|
| 334 |
+
out_ch,
|
| 335 |
+
kernel_size=kernel_size,
|
| 336 |
+
stride=stride,
|
| 337 |
+
padding=padding,
|
| 338 |
+
dilation=dilation,
|
| 339 |
+
groups=groups)
|
| 340 |
+
self.bn = nn.BatchNorm2d(out_ch)
|
| 341 |
+
self.rl = nn.ReLU(inplace=True)
|
| 342 |
+
|
| 343 |
+
def forward(self,x):
|
| 344 |
+
return self.rl(self.bn(self.conv(x)))
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
class BriaRMBG(nn.Module):
|
| 348 |
+
|
| 349 |
+
def __init__(self,in_ch=3,out_ch=1):
|
| 350 |
+
super(BriaRMBG,self).__init__()
|
| 351 |
+
|
| 352 |
+
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
| 353 |
+
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 354 |
+
|
| 355 |
+
self.stage1 = RSU7(64,32,64)
|
| 356 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 357 |
+
|
| 358 |
+
self.stage2 = RSU6(64,32,128)
|
| 359 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 360 |
+
|
| 361 |
+
self.stage3 = RSU5(128,64,256)
|
| 362 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 363 |
+
|
| 364 |
+
self.stage4 = RSU4(256,128,512)
|
| 365 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 366 |
+
|
| 367 |
+
self.stage5 = RSU4F(512,256,512)
|
| 368 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 369 |
+
|
| 370 |
+
self.stage6 = RSU4F(512,256,512)
|
| 371 |
+
|
| 372 |
+
# decoder
|
| 373 |
+
self.stage5d = RSU4F(1024,256,512)
|
| 374 |
+
self.stage4d = RSU4(1024,128,256)
|
| 375 |
+
self.stage3d = RSU5(512,64,128)
|
| 376 |
+
self.stage2d = RSU6(256,32,64)
|
| 377 |
+
self.stage1d = RSU7(128,16,64)
|
| 378 |
+
|
| 379 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 380 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 381 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
| 382 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
| 383 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
| 384 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
| 385 |
+
|
| 386 |
+
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
| 387 |
+
|
| 388 |
+
def forward(self,x):
|
| 389 |
+
|
| 390 |
+
hx = x
|
| 391 |
+
|
| 392 |
+
hxin = self.conv_in(hx)
|
| 393 |
+
#hx = self.pool_in(hxin)
|
| 394 |
+
|
| 395 |
+
#stage 1
|
| 396 |
+
hx1 = self.stage1(hxin)
|
| 397 |
+
hx = self.pool12(hx1)
|
| 398 |
+
|
| 399 |
+
#stage 2
|
| 400 |
+
hx2 = self.stage2(hx)
|
| 401 |
+
hx = self.pool23(hx2)
|
| 402 |
+
|
| 403 |
+
#stage 3
|
| 404 |
+
hx3 = self.stage3(hx)
|
| 405 |
+
hx = self.pool34(hx3)
|
| 406 |
+
|
| 407 |
+
#stage 4
|
| 408 |
+
hx4 = self.stage4(hx)
|
| 409 |
+
hx = self.pool45(hx4)
|
| 410 |
+
|
| 411 |
+
#stage 5
|
| 412 |
+
hx5 = self.stage5(hx)
|
| 413 |
+
hx = self.pool56(hx5)
|
| 414 |
+
|
| 415 |
+
#stage 6
|
| 416 |
+
hx6 = self.stage6(hx)
|
| 417 |
+
hx6up = _upsample_like(hx6,hx5)
|
| 418 |
+
|
| 419 |
+
#-------------------- decoder --------------------
|
| 420 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
| 421 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
| 422 |
+
|
| 423 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
| 424 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 425 |
+
|
| 426 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
| 427 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 428 |
+
|
| 429 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
| 430 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 431 |
+
|
| 432 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
#side output
|
| 436 |
+
d1 = self.side1(hx1d)
|
| 437 |
+
d1 = _upsample_like(d1,x)
|
| 438 |
+
|
| 439 |
+
d2 = self.side2(hx2d)
|
| 440 |
+
d2 = _upsample_like(d2,x)
|
| 441 |
+
|
| 442 |
+
d3 = self.side3(hx3d)
|
| 443 |
+
d3 = _upsample_like(d3,x)
|
| 444 |
+
|
| 445 |
+
d4 = self.side4(hx4d)
|
| 446 |
+
d4 = _upsample_like(d4,x)
|
| 447 |
+
|
| 448 |
+
d5 = self.side5(hx5d)
|
| 449 |
+
d5 = _upsample_like(d5,x)
|
| 450 |
+
|
| 451 |
+
d6 = self.side6(hx6)
|
| 452 |
+
d6 = _upsample_like(d6,x)
|
| 453 |
+
|
| 454 |
+
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
|
| 455 |
+
|
foo.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def hello():
|
| 2 |
+
print("hello world")
|
input.jpg
ADDED
|
requirements.txt
CHANGED
|
@@ -1,26 +1,9 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
librosa==0.9.2
|
| 11 |
-
matplotlib==3.9.0
|
| 12 |
-
numpy==1.23.0
|
| 13 |
-
omegaconf==2.3.0
|
| 14 |
-
packaging==24.1
|
| 15 |
-
progressbar33==2.4
|
| 16 |
-
protobuf==3.20.*
|
| 17 |
-
safetensors==0.4.4
|
| 18 |
-
sentencepiece==0.1.99
|
| 19 |
-
scipy==1.8.0
|
| 20 |
-
soundfile==0.12.1
|
| 21 |
-
torchlibrosa==0.1.0
|
| 22 |
-
tqdm==4.63.1
|
| 23 |
-
wandb==0.12.14
|
| 24 |
-
ipython==8.12.0
|
| 25 |
-
gradio==4.3.0
|
| 26 |
-
wavio==0.0.7
|
|
|
|
| 1 |
+
gradio==4.16.0
|
| 2 |
+
gradio_imageslider
|
| 3 |
+
#torch
|
| 4 |
+
#torchvision
|
| 5 |
+
pillow
|
| 6 |
+
numpy
|
| 7 |
+
typing
|
| 8 |
+
gitpython
|
| 9 |
+
huggingface_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|