File size: 4,664 Bytes
427cbc1
 
 
 
 
 
 
 
 
 
c20266f
d868e89
c20266f
 
 
 
d868e89
c20266f
d868e89
c20266f
d868e89
c20266f
d868e89
c20266f
 
 
 
 
d868e89
c20266f
d868e89
c20266f
d868e89
c20266f
 
 
 
 
 
d868e89
c20266f
d868e89
c20266f
d868e89
c20266f
d868e89
c20266f
 
 
d868e89
c20266f
 
 
d868e89
c20266f
 
 
 
d868e89
c20266f
 
d868e89
c20266f
d868e89
c20266f
d868e89
c20266f
 
 
 
 
 
 
d868e89
 
 
c20266f
d868e89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
title: Sentiment-Analysis
emoji: ๐Ÿ“Š
colorFrom: blue
colorTo: indigo
sdk: docker
pinned: false
app_port: 7860
---

# ๐Ÿ“Š End-to-End MLOps Pipeline for Sentiment Analysis regarding Online Reputation

![Build Status](https://img.shields.io/badge/build-passing-brightgreen)
![Python](https://img.shields.io/badge/python-3.9%2B-blue)
![Deployment](https://img.shields.io/badge/deployed%20on-HuggingFace-orange)
![License](https://img.shields.io/badge/license-MIT-green)

## ๐Ÿš€ Project Overview

**MachineInnovators Inc.** focuses on scalable, production-ready machine learning applications. This project is a comprehensive **MLOps solution** designed to monitor online company reputation through automated sentiment analysis.

Unlike standard data science experiments, this repository demonstrates a **full-cycle ML workflow**, moving from model training to automated deployment. It addresses the business need for real-time reputation tracking by classifying social media feedback (Positive, Neutral, Negative) using an automated pipeline.

### Key Features
* **Production-First Approach:** Focus on scalability, modularity, and code quality.
* **CI/CD Automation:** Integrated pipeline for automated testing and deployment using GitHub Actions.
* **Continuous Deployment:** Automatic deployment to Hugging Face Spaces upon successful builds.
* **Reproducibility:** Code and environment are strictly versioned to ensure consistent results.

---

## ๐Ÿ› ๏ธ Tech Stack & Tools

* **Core:** Python 3.9+
* **Machine Learning:** [FastText / Transformers (RoBERTa)] **
* **MLOps & CI/CD:** GitHub Actions
* **Deployment:** Hugging Face Spaces
* **Version Control:** Git
* **Development:** Google Colab (Prototyping) -> VS Code (Production)

---

## โš™๏ธ Architecture & MLOps Workflow

The project follows a rigorous MLOps pipeline to ensure reliability and speed of delivery:

1.  **Data Ingestion & Preprocessing:**
    * Cleaning and tokenization of social media data using industry-standard libraries.
    * Usage of public datasets labeled for sentiment analysis.

2.  **Model Development:**
    * Implementation of a robust sentiment classification model.
    * Optimization for inference speed and accuracy.

3.  **CI/CD Pipeline (GitHub Actions):**
    * **Linting:** Enforces code style (PEP8) to maintain high readability.
    * **Testing:** Unit tests ensure that data processing and prediction logic function correctly before any merge.
    * **Delivery:** Upon passing all checks on the `main` branch, the application is packaged and deployed.

4.  **Deployment:**
    * The model is served via a web interface hosted on **Hugging Face Spaces**, allowing for immediate user interaction and testing.

---

## ๐Ÿ“‚ Repository Structure

```bash
โ”œโ”€โ”€ .github/workflows/  # CI/CD configurations (GitHub Actions)
โ”œโ”€โ”€ app/                # Application code (Inference & UI)
โ”œโ”€โ”€ src/                # Source code for training and processing
โ”‚   โ”œโ”€โ”€ model.py        # Model architecture and training logic
โ”‚   โ”œโ”€โ”€ preprocess.py   # Data cleaning pipeline
โ”‚   โ””โ”€โ”€ utils.py        # Utility functions
โ”œโ”€โ”€ tests/              # Unit and integration tests
โ”œโ”€โ”€ notebooks/          # Exploratory Data Analysis (EDA) and prototyping
โ”œโ”€โ”€ requirements.txt    # Project dependencies
โ””โ”€โ”€ README.md           # Project documentation

Clone the repository:

Bash

git clone https://github.com/your-username/your-repo-name.git
cd your-repo-name
Install dependencies:

Bash

pip install -r requirements.txt
Run the application:

Bash

python app/main.py
# OR if using Streamlit/Gradio
streamlit run app/app.py
Run Tests:

Bash

pytest tests/
๐Ÿ“ˆ Results and Performance
Model Accuracy: [Insert Accuracy, e.g., 85%]

F1-Score: [Insert F1 Score]

Inference Speed: [Optional: e.g., <50ms per tweet]

Note: Detailed analysis of the model's performance and the confusion matrix can be found in the notebooks directory.

๐Ÿ”ฎ Future Improvements
Drift Detection: Implementing tools like Evidently AI to visualize data drift.

Containerization: Fully Dockerizing the application for cloud-agnostic deployment (AWS/GCP).

API Expansion: Creating a REST API using FastAPI for integration with external dashboards.

๐Ÿค Contributing
Contributions, issues, and feature requests are welcome! Feel free to check the issues page.

๐Ÿ“ License
Distributed under the MIT License. See LICENSE for more information.

๐Ÿ’ก Note for the Reviewer
This project was developed as a comprehensive exercise to demonstrate Full-Stack Data Science capabilities, bridging the gap between model development and production engineering.