File size: 9,515 Bytes
faadabf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Environment setup
from pathlib import Path
import os
import sys
sys.path.append(str(Path(__file__).parent))
# FIXME add weights_only=False in /usr/local/lib/python3.10/site-packages/fairseq/checkpoint_utils.py#315
if os.path.exists('/usr/local/lib/python3.10/site-packages/fairseq/checkpoint_utils.py'):
    file_lines = []
    with open('/usr/local/lib/python3.10/site-packages/fairseq/checkpoint_utils.py', 'r') as f:
        for line in f:
            file_lines.append(line.strip('\n'))
    file_lines[314] = file_lines[314].replace(
        "state = torch.load(f, map_location=torch.device(\"cpu\"))",
        "state = torch.load(f, map_location=torch.device(\"cpu\"), weights_only=False)"
    )
    with open('/usr/local/lib/python3.10/site-packages/fairseq/checkpoint_utils.py', 'w') as f:
        for line in file_lines:
            f.write(line+'\n')
    print('[DEBUG] added weights_only=False')
# Run
import spaces
import gradio as gr
from zipfile import ZipFile
from typing import Literal
from huggingface_hub import snapshot_download
from fireredtts.models.fireredtts import FireRedTTS
# NOTE disable verbose INFO logs
import logging
httpx_logger = logging.getLogger("httpx")
httpx_logger.setLevel(logging.WARNING)

# NOTE Some launching setups
# - install fairseq manually ("python -m pip install pip==24.0")
# - manually add weights_only=False in /usr/local/lib/python3.10/site-packages/fairseq/checkpoint_utils.py#315


# ================================================
#                   FireRedTTS1s Model
# ================================================
# Global model instance
tts_flow: FireRedTTS = None
tts_acollm: FireRedTTS = None
def initiate_model(pretrained_dir: str):
    global tts_flow, tts_acollm
    if tts_flow is None:
        tts_flow = FireRedTTS(
            config_path='configs/config_24k_flow.json',
            pretrained_path=pretrained_dir,
        )
    if tts_acollm is None:
        tts_acollm = FireRedTTS(
            config_path='configs/config_24k.json',
            pretrained_path=pretrained_dir,
        )


# ================================================
#                   Gradio
# ================================================

# i18n
_i18n_key2lang_dict = dict(
    # Title markdown
    title_md_desc=dict(
        en="FireRedTTS-1s 🔥 Streamable TTS",
        zh="FireRedTTS-1s 🔥 可流式TTS",
    ),
    # Decoder choice radio
    decoder_choice_label=dict(
        en="Decoder Choice",
        zh="解码器选择",
    ),
    decoder_choice_1=dict(
        en="Flow Matching",
        zh="Flow Matching",
    ),
    decoder_choice_2=dict(
        en="Acoustic LLM",
        zh="Acoustic LLM",
    ),
    # Speaker Prompt
    spk_prompt_audio_label=dict(
        en="Speaker Prompt Audio",
        zh="参考语音",
    ),
    spk_prompt_text_label=dict(
        en="Speaker Prompt Text",
        zh="参考语音的文本",
    ),
    spk_prompt_text_placeholder=dict(
        en="Speaker Prompt Text",
        zh="参考语音的文本",
    ),
    # Input textbox
    target_text_input_label=dict(
        en="Text To Synthesis",
        zh="待合成文本",
    ),
    target_text_input_placeholder=dict(
        en="Text To Synthesis",
        zh="待合成文本",
    ),
    # Generate button
    generate_btn_label=dict(
        en="Generate Audio",
        zh="合成",
    ),
    # Generated audio
    generated_audio_label=dict(
        en="Generated Audio",
        zh="合成的音频",
    ),
    # Warining1: incomplete prompt info
    warn_incomplete_prompt=dict(
        en="Please provide prompt audio and text",
        zh="请提供说话人参考语音与参考文本",
    ),
    # Warining2: invalid text for target text input
    warn_invalid_target_text=dict(
        en="Empty input text",
        zh="待合成文本为空",
    ),
)

global_lang: Literal['zh', 'en'] = 'zh'
def i18n(key):
    global global_lang
    return _i18n_key2lang_dict[key][global_lang]


def check_monologue_text(text:str, prefix:str=None)->bool:
    text = text.strip()
    # Check speaker tags
    if prefix is not None and (not text.startswith(prefix)):
        return False
    # Remove prefix
    if prefix is not None:
        text = text.removeprefix(prefix)
    text = text.strip()
    # If empty?
    if len(text) == 0:
        return False
    return True


@spaces.GPU(duration=60)
def synthesis_function(
    spk_prompt_audio: str,
    spk_prompt_text: str,
    target_text: str,
    decoder_choice: Literal[0, 1] = 0,  # 0 means flow matching decoder
):
    global tts_flow, tts_acollm

    # Check prompt info
    spk_prompt_text = spk_prompt_text.strip()
    if spk_prompt_audio is None or spk_prompt_text == "":
        gr.Warning(message=i18n('warn_incomplete_prompt'))
        return None
    # Check target text
    target_text = target_text.strip()
    if target_text == "":
        gr.Warning(message=i18n('warn_invalid_target_text'))
        return None
    
    # Go synthesis
    if decoder_choice == 0:
        audio = tts_flow.synthesize(
            prompt_wav=spk_prompt_audio,
            prompt_text=spk_prompt_text,
            text=target_text,
            lang="zh",
            use_tn=True
        )   
    else:
        audio = tts_acollm.synthesize(
            prompt_wav=spk_prompt_audio,
            prompt_text=spk_prompt_text,
            text=target_text,
            lang="zh",
            use_tn=True
        )
    return (24000, audio.detach().cpu().squeeze(0).numpy())


# UI rendering
def render_interface()->gr.Blocks:
    with gr.Blocks(title="FireRedTTS-2", theme=gr.themes.Default()) as page:
        # ======================== UI ========================
        # A large title
        title_desc = gr.Markdown(value="# {}".format(i18n('title_md_desc')))
        with gr.Row():
            lang_choice = gr.Radio(
                choices=['中文', 'English'],
                value='中文',
                label='Display Language/显示语言',
                type="index",
                interactive=True,
            )
            decoder_choice = gr.Radio(
                choices=[i18n('decoder_choice_1'), i18n('decoder_choice_2')],
                value=i18n('decoder_choice_1'),
                label=i18n('decoder_choice_label'),
                type="index",
                interactive=True,
            )
        with gr.Row():
            # ==== Speaker Prompt ====
            spk_prompt_text = gr.Textbox(
                label=i18n('spk_prompt_text_label'),
                placeholder=i18n('spk_prompt_text_placeholder'),
                lines=5,
            )
            spk_prompt_audio = gr.Audio(
                label=i18n('spk_prompt_audio_label'),
                type="filepath",
                editable=False,
                interactive=True,
            )   # Audio component returns tmp audio path
            # ==== Target Text ====
            target_text_input = gr.Textbox(
                label=i18n('target_text_input_label'),
                placeholder=i18n('target_text_input_placeholder'),
                lines=5,
            )
        # Generate button
        generate_btn = gr.Button(value=i18n('generate_btn_label'), variant="primary", size="lg")
        # Long output audio
        generate_audio = gr.Audio(
            label=i18n('generated_audio_label'), 
            interactive=False,
        )

        # ======================== Action ========================
        # Language action
        def _change_component_language(lang):
            global global_lang 
            global_lang = ['zh', 'en'][lang]
            return [
                # title_desc
                gr.update(value="# {}".format(i18n('title_md_desc'))),
                # decoder_choice
                gr.update(label=i18n('decoder_choice_label')),
                # spk_prompt_{audio,text}
                gr.update(label=i18n('spk_prompt_text_label'), placeholder=i18n('spk_prompt_text_placeholder')), 
                gr.update(label=i18n('spk_prompt_audio_label')), 
                # target_text_input
                gr.update(label=i18n('target_text_input_label'), placeholder=i18n('target_text_input_placeholder')),
                # generate_btn
                gr.update(value=i18n('generate_btn_label')), 
                # generate_audio
                gr.update(label=i18n('generated_audio_label')), 
            ]
        lang_choice.change(
            fn=_change_component_language,
            inputs=[lang_choice],
            outputs=[
                title_desc, decoder_choice,
                spk_prompt_text, spk_prompt_audio, 
                target_text_input, 
                generate_btn, generate_audio,
            ]
        )
        generate_btn.click(
            fn=synthesis_function,
            inputs=[spk_prompt_audio, spk_prompt_text, target_text_input, decoder_choice],
            outputs=[generate_audio]
        )
    return page


if __name__ == '__main__':
    # Download model
    snapshot_download(repo_id='FireRedTeam/FireRedTTS-1S', local_dir='pretrained_models/FireRedTTS-1S')
    # Unzip model, weights under "pretrained_models/FireRedTTS-1S/pretrained_models"
    with ZipFile('pretrained_models/FireRedTTS-1S/pretrained_models.zip', 'r')  as zipf:
        zipf.extractall('pretrained_models/FireRedTTS-1S')
    # Init model
    initiate_model('pretrained_models/FireRedTTS-1S/pretrained_models')
    print('[INFO] model loaded')
    # UI
    page = render_interface()
    page.launch()