Spaces:
Runtime error
Runtime error
| import logging | |
| import pathlib | |
| from typing import List | |
| import gradio as gr | |
| import pandas as pd | |
| from gt4sd.algorithms.controlled_sampling.paccmann_gp import ( | |
| PaccMannGPGenerator, | |
| PaccMannGP, | |
| ) | |
| from gt4sd.algorithms.controlled_sampling.paccmann_gp.implementation import ( | |
| MINIMIZATION_FUNCTIONS, | |
| ) | |
| from gt4sd.algorithms.registry import ApplicationsRegistry | |
| from utils import draw_grid_generate | |
| logger = logging.getLogger(__name__) | |
| logger.addHandler(logging.NullHandler()) | |
| MINIMIZATION_FUNCTIONS.pop("callable", None) | |
| MINIMIZATION_FUNCTIONS.pop("molwt", None) | |
| def run_inference( | |
| algorithm_version: str, | |
| targets: List[str], | |
| protein_target: str, | |
| temperature: float, | |
| length: float, | |
| number_of_samples: int, | |
| limit: int, | |
| number_of_steps: int, | |
| number_of_initial_points: int, | |
| number_of_optimization_rounds: int, | |
| sampling_variance: float, | |
| samples_for_evaluation: int, | |
| maximum_number_of_sampling_steps: int, | |
| seed: int, | |
| ): | |
| config = PaccMannGPGenerator( | |
| algorithm_version=algorithm_version.split("_")[-1], | |
| batch_size=32, | |
| temperature=temperature, | |
| generated_length=length, | |
| limit=limit, | |
| acquisition_function="EI", | |
| number_of_steps=number_of_steps, | |
| number_of_initial_points=number_of_initial_points, | |
| initial_point_generator="random", | |
| number_of_optimization_rounds=number_of_optimization_rounds, | |
| sampling_variance=sampling_variance, | |
| samples_for_evaluation=samples_for_evaluation, | |
| maximum_number_of_sampling_steps=maximum_number_of_sampling_steps, | |
| seed=seed, | |
| ) | |
| target = {i: {} for i in targets} | |
| if "affinity" in targets: | |
| if protein_target == "" or not isinstance(protein_target, str): | |
| raise ValueError( | |
| f"Protein target must be specified for affinity prediction, not ={protein_target}" | |
| ) | |
| target["affinity"]["protein"] = protein_target | |
| else: | |
| protein_target = "" | |
| model = PaccMannGP(config, target=target) | |
| samples = list(model.sample(number_of_samples)) | |
| return draw_grid_generate( | |
| samples=samples, | |
| n_cols=5, | |
| properties=set(target.keys()), | |
| protein_target=protein_target, | |
| ) | |
| if __name__ == "__main__": | |
| # Preparation (retrieve all available algorithms) | |
| all_algos = ApplicationsRegistry.list_available() | |
| algos = [ | |
| x["algorithm_version"] | |
| for x in list(filter(lambda x: "PaccMannGP" in x["algorithm_name"], all_algos)) | |
| ] | |
| # Load metadata | |
| metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") | |
| examples = pd.read_csv( | |
| metadata_root.joinpath("examples.csv"), header=None, sep="|" | |
| ).fillna("") | |
| examples[1] = examples[1].apply(eval) | |
| with open(metadata_root.joinpath("article.md"), "r") as f: | |
| article = f.read() | |
| with open(metadata_root.joinpath("description.md"), "r") as f: | |
| description = f.read() | |
| demo = gr.Interface( | |
| fn=run_inference, | |
| title="PaccMannGP", | |
| inputs=[ | |
| gr.Dropdown(algos, label="Algorithm version", value="v0"), | |
| gr.CheckboxGroup( | |
| choices=list(MINIMIZATION_FUNCTIONS.keys()), | |
| value=["qed"], | |
| multiselect=True, | |
| label="Property goals", | |
| ), | |
| gr.Textbox( | |
| label="Protein target", | |
| placeholder="MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTT", | |
| lines=1, | |
| ), | |
| gr.Slider(minimum=0.5, maximum=2, value=1, label="Decoding temperature"), | |
| gr.Slider( | |
| minimum=5, | |
| maximum=400, | |
| value=100, | |
| label="Maximal sequence length", | |
| step=1, | |
| ), | |
| gr.Slider( | |
| minimum=1, maximum=50, value=10, label="Number of samples", step=1 | |
| ), | |
| gr.Slider(minimum=1, maximum=8, value=4.0, label="Limit"), | |
| gr.Slider(minimum=1, maximum=32, value=8, label="Number of steps", step=1), | |
| gr.Slider( | |
| minimum=1, maximum=32, value=4, label="Number of initial points", step=1 | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=4, | |
| value=1, | |
| label="Number of optimization rounds", | |
| step=1, | |
| ), | |
| gr.Slider(minimum=0.01, maximum=1, value=0.1, label="Sampling variance"), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=10, | |
| value=1, | |
| label="Samples used for evaluation", | |
| step=1, | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=64, | |
| value=4, | |
| label="Maximum number of sampling steps", | |
| step=1, | |
| ), | |
| gr.Number(value=42, label="Seed", precision=0), | |
| ], | |
| outputs=gr.HTML(label="Output"), | |
| article=article, | |
| description=description, | |
| examples=examples.values.tolist(), | |
| ) | |
| demo.launch(debug=True, show_error=True) | |