# app.py import os import time import re import requests import phonenumbers import pandas as pd import urllib.parse from bs4 import BeautifulSoup import torch from transformers import ( AutoTokenizer, AutoModelForTokenClassification, AutoModelForSeq2SeqLM, pipeline ) import gradio as gr from concurrent.futures import ThreadPoolExecutor, as_completed from email.message import EmailMessage import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText # ============================ # CONFIG (ENV VARS recommended) # ============================ # IMPORTANT: set these as Space "Secrets" (see README below) API_KEY = os.environ.get("GOOGLE_API_KEY", "YOUR_GOOGLE_API_KEY") CX = os.environ.get("GOOGLE_CSE_ID", "YOUR_CSE_ID") DEFAULT_COUNTRY = "Ghana" RESULTS_PER_QUERY = int(os.environ.get("RESULTS_PER_QUERY", 4)) MAX_SCRAPE_WORKERS = int(os.environ.get("MAX_SCRAPE_WORKERS", 6)) ALLY_AI_NAME = os.environ.get("ALLY_AI_NAME", "Ally AI Assistant") ALLY_AI_LOGO_URL_DEFAULT = os.environ.get("ALLY_AI_LOGO_URL", "https://i.ibb.co/7nZqz0H/ai-logo.png") # Optional country maps for search bias & phone parsing COUNTRY_TLD_MAP = {"Ghana":"gh","Nigeria":"ng","Kenya":"ke","South Africa":"za","USA":"us","United Kingdom":"uk"} COUNTRY_REGION_MAP= {"Ghana":"GH","Nigeria":"NG","Kenya":"KE","South Africa":"ZA","USA":"US","United Kingdom":"GB"} # HTTP + Regex HEADERS = {"User-Agent":"Mozilla/5.0 (X11; Linux x86_64)"} EMAIL_REGEX = re.compile(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}") # ============================ # MODELS (lightweight & CPU-friendly) # ============================ DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print("Device set to use", DEVICE) # NER model (people/orgs/locs) ner_model_id = "dslim/bert-base-NER" ner_tokenizer = AutoTokenizer.from_pretrained(ner_model_id) ner_model = AutoModelForTokenClassification.from_pretrained(ner_model_id) ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple", device=0 if DEVICE=="cuda" else -1) # Summarizer / anonymizer text_model_id = "google/flan-t5-large" text_tokenizer = AutoTokenizer.from_pretrained(text_model_id) text_model = AutoModelForSeq2SeqLM.from_pretrained(text_model_id).to(DEVICE) # ============================ # TAXONOMY & HELPERS # ============================ PROFESSION_KEYWORDS = ["lawyer","therapist","doctor","counselor","social worker", "advocate","psychologist","psychiatrist","consultant","nurse","hotline","gbv"] PROBLEM_PROFESSION_MAP = { "rape": ["lawyer","therapist","counselor","doctor"], "sexual assault": ["lawyer","therapist","counselor"], "domestic violence": ["lawyer","social worker","therapist"], "abuse": ["counselor","social worker","therapist","lawyer"], "trauma": ["therapist","psychologist","psychiatrist"], "depression": ["therapist","psychologist","doctor"], "violence": ["lawyer","counselor","social worker"], } def get_region_for_country(country: str) -> str: return COUNTRY_REGION_MAP.get(country, "GH") def get_tld_for_country(country: str) -> str: return COUNTRY_TLD_MAP.get(country, "") def build_country_biased_query(core: str, country: str) -> str: tld = get_tld_for_country(country) suffix = f" in {country}" if tld: return f"{core}{suffix} site:.{tld} OR {country}" return f"{core}{suffix}" def dedup_by_url(items): seen, out = set(), [] for it in items: u = it.get("link") or it.get("url") if u and u not in seen: seen.add(u) out.append(it) return out # ============================ # SEARCH & SCRAPING # ============================ def google_search(query, num_results=5): if not API_KEY or not CX or "YOUR_GOOGLE_API_KEY" in API_KEY or "YOUR_CSE_ID" in CX: raise RuntimeError("Google API key and CSE ID must be set as environment variables.") url = "https://www.googleapis.com/customsearch/v1" params = {"q":query, "key":API_KEY, "cx":CX, "num":num_results} r = requests.get(url, params=params, timeout=20) r.raise_for_status() items = r.json().get("items", []) or [] return [{"title":i.get("title",""), "link":i.get("link",""), "snippet":i.get("snippet","")} for i in items] def extract_phones(text, region="GH"): phones = [] for match in phonenumbers.PhoneNumberMatcher(text, region): try: phones.append(phonenumbers.format_number(match.number, phonenumbers.PhoneNumberFormat.INTERNATIONAL)) except Exception: pass return list(set(phones)) def scrape_contacts(url, region="GH"): try: res = requests.get(url, headers=HEADERS, timeout=12) if not res.ok or not res.text: return {"emails": [], "phones": []} text = BeautifulSoup(res.text, "html.parser").get_text(separator=" ") text = " ".join(text.split())[:300000] emails = list(set(EMAIL_REGEX.findall(text))) phones = extract_phones(text, region) return {"emails": emails, "phones": phones} except Exception as e: print(f"[scrape error] {url} -> {e}") return {"emails": [], "phones": []} # ============================ # NER + STORY → PROFESSIONS # ============================ def extract_entities(text): if not text: return [],[],[] try: ner_results = ner_pipe(text) except Exception as e: print("[ner error]", e) return [],[],[] people = [e["word"] for e in ner_results if e.get("entity_group") == "PER"] orgs = [e["word"] for e in ner_results if e.get("entity_group") == "ORG"] locs = [e["word"] for e in ner_results if e.get("entity_group") == "LOC"] return list(set(people)), list(set(orgs)), list(set(locs)) def professions_from_story(story: str): s = (story or "").lower() found = set([p for p in PROFESSION_KEYWORDS if p in s]) for prob, profs in PROBLEM_PROFESSION_MAP.items(): if prob in s: found.update(profs) if not found: return ["gbv","counselor"] order = ["lawyer","therapist","counselor","social worker","psychologist","psychiatrist","doctor","advocate","nurse","hotline","gbv"] return [p for p in order if p in found] def build_queries(story: str, country: str): profs = professions_from_story(story) cores = [] for p in profs: if p == "gbv": cores += ["GBV support organizations", "gender based violence help"] else: cores += [f"{p} for GBV", f"{p} for sexual assault"] unique_cores, seen = [], set() for c in cores: if c not in seen: unique_cores.append(c); seen.add(c) return [build_country_biased_query(core, country) for core in unique_cores], profs # ============================ # TEXT GEN: anonymize + result summary # ============================ def anonymize_story(story: str, max_sentences: int = 2): if not story or not story.strip(): return "" prompt = ( "Anonymize and shorten the following personal story for contacting professionals. " "Remove names, exact ages, dates, locations and any identifying details. " f"Keep only the essential problem and the type of help requested. Output <= {max_sentences} sentences.\n\n" f"Story: {story}\n\nSummary:" ) inputs = text_tokenizer(prompt, return_tensors="pt").to(DEVICE) with torch.no_grad(): outputs = text_model.generate(**inputs, max_new_tokens=120, temperature=0.2) return text_tokenizer.decode(outputs[0], skip_special_tokens=True).strip() def generate_summary(query, people, orgs, locs): prompt = ( "Write a short, empathetic summary of these search results for a person seeking GBV help.\n" f"Query: {query}\nPeople: {', '.join(people) or '—'}\nOrgs: {', '.join(orgs) or '—'}\nLocations: {', '.join(locs) or '—'}\n\n" "Explain how the organizations/professionals can help in 3-4 sentences." ) inputs = text_tokenizer(prompt, return_tensors="pt").to(DEVICE) with torch.no_grad(): outputs = text_model.generate(**inputs, max_new_tokens=150, temperature=0.7) return text_tokenizer.decode(outputs[0], skip_special_tokens=True).strip() # ============================ # MAIN PIPELINE # ============================ def find_professionals_from_story(story, country=DEFAULT_COUNTRY, results_per_query=RESULTS_PER_QUERY): region = get_region_for_country(country) queries, profs = build_queries(story, country) # Search search_results = [] for q in queries: try: items = google_search(q, num_results=results_per_query) for it in items: it["query"] = q search_results.extend(items) except Exception as e: print("[search error]", q, e) search_results = dedup_by_url(search_results) if not search_results: return {"summary":"No results found. Try a different country or wording.", "professionals":[], "queries_used":queries} # NER on titles/snippets all_people, all_orgs, all_locs = [], [], [] for r in search_results: ctx = f"{r.get('title','')}. {r.get('snippet','')}" p,o,l = extract_entities(ctx) all_people += p; all_orgs += o; all_locs += l # Scrape contacts concurrently professionals = [] with ThreadPoolExecutor(max_workers=MAX_SCRAPE_WORKERS) as ex: futures = {ex.submit(scrape_contacts, r["link"], region): r for r in search_results} for fut in as_completed(futures): r = futures[fut] contacts = {"emails": [], "phones": []} try: contacts = fut.result() except Exception as e: print("[scrape future error]", r["link"], e) professionals.append({ "title": r.get("title",""), "url": r.get("link",""), "email": contacts["emails"][0] if contacts["emails"] else "Not found", "phone": contacts["phones"][0] if contacts["phones"] else "Not found", "source_query": r.get("query","") }) summary = generate_summary("; ".join(queries[:3]) + (" ..." if len(queries)>3 else ""), list(set(all_people)), list(set(all_orgs)), list(set(all_locs))) # Sort by availability of email/phone professionals.sort(key=lambda it: (0 if it["email"]!="Not found" else 1, 0 if it["phone"]!="Not found" else 1)) return {"summary": summary, "professionals": professionals, "queries_used": queries} # ============================ # DRAFT (mailto + .eml) # ============================ def build_mailto_and_eml(to_addr, subject, body, default_from="noreply@ally.ai"): from email.message import EmailMessage import time msg = EmailMessage() msg["From"] = default_from msg["To"] = to_addr msg["Subject"] = subject msg.set_content(body) # ✅ Save to a writable directory (current working dir or "tmp") os.makedirs("tmp", exist_ok=True) fname = os.path.join("tmp", f"email_draft_{int(time.time())}.eml") with open(fname, "wb") as f: f.write(msg.as_bytes()) # Create mailto link (this part is fine) mailto = f"mailto:{to_addr}?subject={subject}&body={body}" return mailto, fname # ============================ # SENDER (SMTP) — Ally AI branding # ============================ def send_ally_ai_email(to_email, subject, body, user_email, sender_email, sender_password, ai_name=ALLY_AI_NAME, logo_url=ALLY_AI_LOGO_URL_DEFAULT): """ Sends an HTML email branded as Ally AI. to_email: recipient (organization) subject: subject line body: main message (already anonymized or full text) user_email: survivor's email (included for reply inside body) sender_email/sender_password: SMTP credentials (use Gmail App Password with Gmail) """ if not to_email or to_email == "Not found": return "❌ No recipient email found — choose a contact with an email." msg = MIMEMultipart("alternative") msg["Subject"] = subject or "Request for support" msg["From"] = f"{ai_name} <{sender_email}>" msg["To"] = to_email html_content = f"""
{body}
Contact the survivor back at: {user_email}
This message was prepared with the help of {ai_name} — connecting survivors with help safely.
{message_text}
"""
text = f"To: {recipient}\nSubject: {subject}\n\n{message_text[:600]}{'...' if len(message_text)>600 else ''}"
return text, html
except Exception as e:
return f"Preview error: {e}", ""
def confirm_action(mode, dropdown_value, df_json, subject, message_text,
user_email, sender_email, sender_password, logo_url):
"""
mode: "Draft only" or "Send via SMTP (Gmail)"
"""
if not dropdown_value:
return "❌ No contact selected.", "", None
# locate contact
try:
idx = int(str(dropdown_value).split(" — ")[0])
rows = pd.DataFrame(df_json)
contact = rows.iloc[idx].to_dict()
except Exception as e:
return f"❌ Selection error: {e}", "", None
recipient = contact.get("email")
if mode.startswith("Send"):
# Validate required fields
if not recipient or recipient == "Not found":
return "❌ This contact has no email address. Choose another contact.", "", None
if not user_email or "@" not in user_email:
return "❌ Please enter your email (so the organisation can contact you).", "", None
if not sender_email or not sender_password:
return "❌ Sender email and app password are required for SMTP sending.", "", None
status = send_ally_ai_email(
to_email=recipient,
subject=subject,
body=message_text,
user_email=user_email,
sender_email=sender_email,
sender_password=sender_password,
ai_name=ALLY_AI_NAME,
logo_url=logo_url or ALLY_AI_LOGO_URL_DEFAULT
)
# also provide an .eml draft copy (optional)
_, eml_path = build_mailto_and_eml(recipient, subject, message_text, default_from=sender_email)
file_out = eml_path if eml_path and os.path.exists(eml_path) else None
return status, "", file_out
else:
# Draft-only path
recip_for_draft = recipient if (recipient and recipient!="Not found") else ""
mailto, eml_path = build_mailto_and_eml(recip_for_draft, subject, message_text, default_from="noreply@ally.ai")
html_link = f'Open draft in email client'
file_out = eml_path if eml_path and os.path.exists(eml_path) else None
return "✅ Draft created (no email sent).", html_link, file_out
with gr.Blocks() as demo:
gr.Markdown("## Ally AI — GBV Help Finder & Email Assistant\n"
"This tool searches local organizations, lets you select a contact, and creates an email draft or sends a branded email via SMTP.\n"
"**Privacy tip:** Prefer anonymized summaries unless you’re comfortable sharing details.")
with gr.Row():
story_in = gr.Textbox(label="Your story (free text)", lines=6, placeholder="Describe your situation and the help you want...")
country_in = gr.Textbox(value=DEFAULT_COUNTRY, label="Country (to bias search)")
search_btn = gr.Button("Search for professionals")
summary_out = gr.Textbox(label="Search summary (AI)", interactive=False)
results_table = gr.Dataframe(headers=["title","url","email","phone","source_query"], label="Search results")
dropdown_sel = gr.Dropdown(label="Select organization (from results)", choices=[])
with gr.Row():
use_anon = gr.Checkbox(value=True, label="Use anonymized summary (recommended)")
anon_out = gr.Textbox(label="Anonymized summary", lines=3)
user_email_in = gr.Textbox(label="Your email (for the organisation to reply to you)")
gr.Markdown("### Compose message")
subject_in = gr.Textbox(value="Request for GBV support", label="Email subject")
message_in = gr.Textbox(label="Message body", lines=10)
with gr.Accordion("Sending options (for automatic sending via Ally AI SMTP)", open=False):
mode = gr.Radio(choices=["Draft only (mailto + .eml)", "Send via SMTP (Gmail)"], value="Draft only (mailto + .eml)", label="Delivery mode")
sender_email_in = gr.Textbox(label="Ally AI sender email (SMTP account)")
sender_pass_in = gr.Textbox(label="Ally AI sender app password", type="password")
logo_url_in = gr.Textbox(value=ALLY_AI_LOGO_URL_DEFAULT, label="Ally AI logo URL")
with gr.Row():
preview_btn = gr.Button("Preview")
confirm_btn = gr.Button("Confirm (Create Draft or Send)")
preview_text_out = gr.Textbox(label="Preview (text)", interactive=False)
preview_html_out = gr.HTML()
status_out = gr.Textbox(label="Status", interactive=False)
mailto_html_out = gr.HTML()
eml_file_out = gr.File(label="Download .eml")
# Wire: Search
def _on_search(story, country):
s, records, options, anon = run_search(story, country)
# set dropdown + anonymized text and prefill message
prefill = make_body(anon, story, True, "") # user email unknown yet
return s, records, gr.update(choices=options, value=(options[0] if options else None)), anon, prefill
search_btn.click(_on_search,
inputs=[story_in, country_in],
outputs=[summary_out, results_table, dropdown_sel, anon_out, message_in])
# When user toggles anonymized vs full story, refresh the message body
def _refresh_body(use_anon_flag, anon_text, story, user_email):
return make_body(anon_text, story, use_anon_flag, user_email)
use_anon.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
user_email_in.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
anon_out.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
story_in.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
# Preview
preview_btn.click(preview_contact,
inputs=[dropdown_sel, results_table, subject_in, message_in],
outputs=[preview_text_out, preview_html_out])
# Confirm (create draft or send)
confirm_btn.click(confirm_action,
inputs=[mode, dropdown_sel, results_table, subject_in, message_in,
user_email_in, sender_email_in, sender_pass_in, logo_url_in],
outputs=[status_out, mailto_html_out, eml_file_out])
demo.launch(share=False)