Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#############################################################################################################################
|
| 2 |
+
# Filename : app.py
|
| 3 |
+
# Description: A Streamlit application to generate recipes given an image of a food and an image of ingredients.
|
| 4 |
+
# Author : Georgios Ioannou
|
| 5 |
+
#
|
| 6 |
+
# Copyright Β© 2024 by Georgios Ioannou
|
| 7 |
+
#############################################################################################################################
|
| 8 |
+
# Import libraries.
|
| 9 |
+
|
| 10 |
+
import openai # gpt-3.5-turbo model inference.
|
| 11 |
+
import os # Load environment variable(s).
|
| 12 |
+
import requests # Send HTTP GET request to Hugging Face models for inference.
|
| 13 |
+
import streamlit as st # Build the GUI of the application.
|
| 14 |
+
import torch # Load Salesforce/blip model(s) on GPU.
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
from dotenv import load_dotenv, find_dotenv # Read local .env file.
|
| 18 |
+
from langchain.chat_models import ChatOpenAI # Access to OpenAI gpt-3.5-turbo model.
|
| 19 |
+
from langchain.chains import LLMChain # Chain to run queries against LLMs.
|
| 20 |
+
|
| 21 |
+
# A prompt template. It accepts a set of parameters from the user that can be used to generate a prompt for a language model.
|
| 22 |
+
from langchain.prompts import PromptTemplate
|
| 23 |
+
from PIL import Image # Open and identify a given image file.
|
| 24 |
+
from transformers import BlipProcessor, BlipForQuestionAnswering # VQA model inference.
|
| 25 |
+
|
| 26 |
+
#############################################################################################################################
|
| 27 |
+
# Load environment variable(s).
|
| 28 |
+
|
| 29 |
+
load_dotenv(find_dotenv()) # Read local .env file.
|
| 30 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 31 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 32 |
+
|
| 33 |
+
#############################################################################################################################
|
| 34 |
+
# Function to apply local CSS.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def local_css(file_name):
|
| 38 |
+
with open(file_name) as f:
|
| 39 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
#############################################################################################################################
|
| 43 |
+
# Load the Visual Question Answering (VQA) model directly.
|
| 44 |
+
# Using transformers.
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
@st.cache_resource
|
| 48 |
+
def load_model():
|
| 49 |
+
blip_processor_base = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
| 50 |
+
blip_model_base = BlipForQuestionAnswering.from_pretrained(
|
| 51 |
+
"Salesforce/blip-vqa-base"
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# Backup model.
|
| 55 |
+
# blip_processor_large = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
| 56 |
+
# blip_model_large = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
| 57 |
+
# return blip_processor_large, blip_model_large
|
| 58 |
+
|
| 59 |
+
return blip_processor_base, blip_model_base
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
#############################################################################################################################
|
| 63 |
+
# General function for any Salesforce/blip model(s).
|
| 64 |
+
# VQA model.
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def generate_answer_blip(processor, model, image, question):
|
| 68 |
+
# Prepare image + question.
|
| 69 |
+
|
| 70 |
+
inputs = processor(images=image, text=question, return_tensors="pt")
|
| 71 |
+
|
| 72 |
+
generated_ids = model.generate(**inputs, max_length=50)
|
| 73 |
+
|
| 74 |
+
generated_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 75 |
+
|
| 76 |
+
return generated_answer
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
#############################################################################################################################
|
| 80 |
+
# Generate answer from the Salesforce/blip model(s).
|
| 81 |
+
# VQA model.
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@st.cache_resource
|
| 85 |
+
def generate_answer(image, question):
|
| 86 |
+
answer_blip_base = generate_answer_blip(
|
| 87 |
+
processor=blip_processor_base,
|
| 88 |
+
model=blip_model_base,
|
| 89 |
+
image=image,
|
| 90 |
+
question=question,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# answer_blip_large = generate_answer_blip(blip_processor_large, blip_model_large, image, question)
|
| 94 |
+
# return answer_blip_large
|
| 95 |
+
|
| 96 |
+
return answer_blip_base
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
#############################################################################################################################
|
| 100 |
+
# Detect ingredients on an image.
|
| 101 |
+
# Object detection model.
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
@st.cache_resource
|
| 105 |
+
def generate_ingredients(image):
|
| 106 |
+
API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50"
|
| 107 |
+
|
| 108 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
| 109 |
+
|
| 110 |
+
with open(image, "rb") as img:
|
| 111 |
+
data = img.read()
|
| 112 |
+
response = requests.post(url=API_URL, data=data, headers=headers)
|
| 113 |
+
ingredients = response.json()
|
| 114 |
+
return ingredients
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
#############################################################################################################################
|
| 118 |
+
# Return the recipe generated by the model for the food and ingredients detected by the previous models.
|
| 119 |
+
# Using Langchain.
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@st.cache_resource
|
| 123 |
+
def generate_recipe(food, ingredients, chef):
|
| 124 |
+
# Model used here: "gpt-3.5-turbo".
|
| 125 |
+
|
| 126 |
+
# The template can be customized to meet one's needs such as:
|
| 127 |
+
# Generate a recipe, generate a scenario, and generate lyrics of a song.
|
| 128 |
+
|
| 129 |
+
template = """
|
| 130 |
+
You are a chef.
|
| 131 |
+
You must sound like {chef}.
|
| 132 |
+
You must make use of these ingredients: {ingredients}.
|
| 133 |
+
Generate a detailed recipe step by step based on the above constraints for this food: {food}.
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
prompt = PromptTemplate(
|
| 137 |
+
template=template, input_variables=["food", "ingredients", "chef"]
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
recipe_llm = LLMChain(
|
| 141 |
+
llm=ChatOpenAI(
|
| 142 |
+
model_name="gpt-3.5-turbo", temperature=0
|
| 143 |
+
), # Increasing the temperature, the model becomes more creative and takes longer for inference.
|
| 144 |
+
prompt=prompt,
|
| 145 |
+
verbose=True, # Print intermediate values to the console.
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
recipe = recipe_llm.predict(
|
| 149 |
+
food=food, ingredients=ingredients, chef=chef
|
| 150 |
+
) # Format prompt with kwargs and pass to LLM.
|
| 151 |
+
|
| 152 |
+
return recipe
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
#############################################################################################################################
|
| 156 |
+
# Return the speech generated by the model for the recipe.
|
| 157 |
+
# Using inference api.
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def generate_speech(response):
|
| 161 |
+
# Model used here: "facebook/mms-tts-eng".
|
| 162 |
+
# Backup model: "espnet/kan-bayashi_ljspeech_vits.
|
| 163 |
+
|
| 164 |
+
# API_URL = (
|
| 165 |
+
# "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
| 166 |
+
# )
|
| 167 |
+
API_URL = "https://api-inference.huggingface.co/models/facebook/mms-tts-eng"
|
| 168 |
+
|
| 169 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
| 170 |
+
|
| 171 |
+
payload = {"inputs": response}
|
| 172 |
+
|
| 173 |
+
response = requests.post(url=API_URL, headers=headers, json=payload)
|
| 174 |
+
|
| 175 |
+
with open("audio.flac", "wb") as file:
|
| 176 |
+
file.write(response.content)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
#############################################################################################################################
|
| 180 |
+
# Conversation with OpenAI gpt-3.5-turbo model.
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0):
|
| 184 |
+
response = openai.ChatCompletion.create(
|
| 185 |
+
model=model,
|
| 186 |
+
messages=messages,
|
| 187 |
+
temperature=temperature, # This is the degree of randomness of the model's output.
|
| 188 |
+
)
|
| 189 |
+
# print(str(response.choices[0].message))
|
| 190 |
+
return response.choices[0].message["content"]
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
#############################################################################################################################
|
| 194 |
+
# Page title and favicon.
|
| 195 |
+
|
| 196 |
+
st.set_page_config(page_title="ChefBot | Recipe Generator/Assistant", page_icon="π΄")
|
| 197 |
+
|
| 198 |
+
#############################################################################################################################
|
| 199 |
+
# Load the Salesforce/blip model directly.
|
| 200 |
+
|
| 201 |
+
if torch.cuda.is_available():
|
| 202 |
+
device = torch.device("cuda")
|
| 203 |
+
# elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
| 204 |
+
# device = torch.device("mps")
|
| 205 |
+
else:
|
| 206 |
+
device = torch.device("cpu")
|
| 207 |
+
|
| 208 |
+
blip_processor_base, blip_model_base = load_model()
|
| 209 |
+
blip_model_base.to(device)
|
| 210 |
+
|
| 211 |
+
#############################################################################################################################
|
| 212 |
+
# Define the chefs for the dropdown menu.
|
| 213 |
+
|
| 214 |
+
chefs = [
|
| 215 |
+
"Gordon Ramsay",
|
| 216 |
+
"Donald Trump",
|
| 217 |
+
"Cardi B",
|
| 218 |
+
]
|
| 219 |
+
|
| 220 |
+
#############################################################################################################################
|
| 221 |
+
# Main function to create the Streamlit web application.
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def main():
|
| 225 |
+
try:
|
| 226 |
+
#####################################################################################################################
|
| 227 |
+
|
| 228 |
+
# Load CSS.
|
| 229 |
+
|
| 230 |
+
local_css("styles/style.css")
|
| 231 |
+
|
| 232 |
+
#####################################################################################################################
|
| 233 |
+
|
| 234 |
+
# Title.
|
| 235 |
+
|
| 236 |
+
title = f"""<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">
|
| 237 |
+
ChefBot - Recipe Generator/Assistant</h1>"""
|
| 238 |
+
st.markdown(title, unsafe_allow_html=True)
|
| 239 |
+
# st.title("ChefBot - Automated Recipe Assistant")
|
| 240 |
+
|
| 241 |
+
#####################################################################################################################
|
| 242 |
+
|
| 243 |
+
# Subtitle.
|
| 244 |
+
|
| 245 |
+
subtitle = f"""<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">
|
| 246 |
+
CUNY Tech Prep Tutorial 2</h2>"""
|
| 247 |
+
st.markdown(subtitle, unsafe_allow_html=True)
|
| 248 |
+
|
| 249 |
+
#####################################################################################################################
|
| 250 |
+
|
| 251 |
+
# Image.
|
| 252 |
+
|
| 253 |
+
image = "./ctp.png"
|
| 254 |
+
left_co, cent_co, last_co = st.columns(3)
|
| 255 |
+
with cent_co:
|
| 256 |
+
st.image(image=image)
|
| 257 |
+
|
| 258 |
+
#####################################################################################################################
|
| 259 |
+
|
| 260 |
+
# Heading 1.
|
| 261 |
+
|
| 262 |
+
heading1 = f"""<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 1rem">
|
| 263 |
+
Food</h3>"""
|
| 264 |
+
st.markdown(heading1, unsafe_allow_html=True)
|
| 265 |
+
|
| 266 |
+
#####################################################################################################################
|
| 267 |
+
|
| 268 |
+
# Upload an image.
|
| 269 |
+
|
| 270 |
+
uploaded_file_food = st.file_uploader(
|
| 271 |
+
label="Choose an image:",
|
| 272 |
+
key="food",
|
| 273 |
+
help="An image of the food that you want a recipe for.",
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
#####################################################################################################################
|
| 277 |
+
|
| 278 |
+
if uploaded_file_food is not None:
|
| 279 |
+
# Display the uploaded image.
|
| 280 |
+
|
| 281 |
+
bytes_data = uploaded_file_food.getvalue()
|
| 282 |
+
with open(uploaded_file_food.name, "wb") as file:
|
| 283 |
+
file.write(bytes_data)
|
| 284 |
+
st.image(
|
| 285 |
+
uploaded_file_food, caption="Uploaded Image.", use_column_width=True
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
raw_image = Image.open(uploaded_file_food.name).convert("RGB")
|
| 289 |
+
|
| 290 |
+
#################################################################################################################
|
| 291 |
+
|
| 292 |
+
# VQA model inference.
|
| 293 |
+
|
| 294 |
+
with st.spinner(
|
| 295 |
+
text="Detecting food..."
|
| 296 |
+
): # Spinner to keep the application interactive.
|
| 297 |
+
# Model inference.
|
| 298 |
+
|
| 299 |
+
answer = generate_answer(raw_image, "Is there a food in the picture?")[
|
| 300 |
+
0
|
| 301 |
+
]
|
| 302 |
+
|
| 303 |
+
if answer == "yes":
|
| 304 |
+
st.success(f"Food detected? {answer}", icon="β")
|
| 305 |
+
question = "What is the food in the picture?"
|
| 306 |
+
food = generate_answer(image=raw_image, question=question)[0]
|
| 307 |
+
st.success(f"Food detected: {food}", icon="β
")
|
| 308 |
+
|
| 309 |
+
#################################################################################################################
|
| 310 |
+
|
| 311 |
+
# Heading 2.
|
| 312 |
+
|
| 313 |
+
heading2 = f"""<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 1rem">
|
| 314 |
+
Ingredients</h3>"""
|
| 315 |
+
st.markdown(heading2, unsafe_allow_html=True)
|
| 316 |
+
|
| 317 |
+
#################################################################################################################
|
| 318 |
+
|
| 319 |
+
# Upload an image.
|
| 320 |
+
|
| 321 |
+
uploaded_file_ingredients = st.file_uploader(
|
| 322 |
+
label="Choose an image:",
|
| 323 |
+
key="ingredients",
|
| 324 |
+
help="An image of the ingredients that you want to use.",
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
#################################################################################################################
|
| 328 |
+
|
| 329 |
+
if uploaded_file_ingredients is not None:
|
| 330 |
+
# Display the uploaded image.
|
| 331 |
+
|
| 332 |
+
bytes_data = uploaded_file_ingredients.getvalue()
|
| 333 |
+
with open(uploaded_file_ingredients.name, "wb") as file:
|
| 334 |
+
file.write(bytes_data)
|
| 335 |
+
st.image(
|
| 336 |
+
uploaded_file_ingredients,
|
| 337 |
+
caption="Uploaded Image.",
|
| 338 |
+
use_column_width=True,
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
#############################################################################################################
|
| 342 |
+
|
| 343 |
+
# Object detection model inference.
|
| 344 |
+
|
| 345 |
+
with st.spinner(
|
| 346 |
+
text="Detecting Ingredients..."
|
| 347 |
+
): # Spinner to keep the application interactive.
|
| 348 |
+
# Model inference.
|
| 349 |
+
ingredients_list = generate_ingredients(
|
| 350 |
+
image=uploaded_file_ingredients.name
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
#############################################################################################################
|
| 354 |
+
|
| 355 |
+
# Display/Output the ingredients detected.
|
| 356 |
+
|
| 357 |
+
ingredients = []
|
| 358 |
+
st.success(f"Ingredients:", icon="π")
|
| 359 |
+
for i, ingredient_dict in enumerate(ingredients_list):
|
| 360 |
+
ingredients.append(ingredient_dict["label"])
|
| 361 |
+
st.write(i + 1, ingredient_dict["label"])
|
| 362 |
+
|
| 363 |
+
#############################################################################################################
|
| 364 |
+
|
| 365 |
+
# Heading 3.
|
| 366 |
+
|
| 367 |
+
heading3 = f"""<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 1rem">
|
| 368 |
+
ChefBot</h3>"""
|
| 369 |
+
st.markdown(heading3, unsafe_allow_html=True)
|
| 370 |
+
|
| 371 |
+
#############################################################################################################
|
| 372 |
+
|
| 373 |
+
# Dropdown menu.
|
| 374 |
+
|
| 375 |
+
chef = st.selectbox(
|
| 376 |
+
label="Select your chef:",
|
| 377 |
+
options=chefs,
|
| 378 |
+
help="Select your chef.",
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
#############################################################################################################
|
| 382 |
+
|
| 383 |
+
# Generate Recipe button
|
| 384 |
+
|
| 385 |
+
col1, col2, col3 = st.columns(3)
|
| 386 |
+
with col2:
|
| 387 |
+
button_recipe = st.button("Generate Recipe")
|
| 388 |
+
|
| 389 |
+
#############################################################################################################
|
| 390 |
+
|
| 391 |
+
if button_recipe:
|
| 392 |
+
#########################################################################################################
|
| 393 |
+
# Langchain + OpenAI gpt-3.5-turbo model inference.
|
| 394 |
+
|
| 395 |
+
with st.spinner(
|
| 396 |
+
text="Generating Recipe..."
|
| 397 |
+
): # Spinner to keep the application interactive.
|
| 398 |
+
# Model inference.
|
| 399 |
+
|
| 400 |
+
recipe = generate_recipe(
|
| 401 |
+
food=food, ingredients=ingredients, chef=chef
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
#########################################################################################################
|
| 405 |
+
# Storing the recipe in session storage for future runs.
|
| 406 |
+
|
| 407 |
+
st.session_state["recipe"] = recipe
|
| 408 |
+
|
| 409 |
+
#########################################################################################################
|
| 410 |
+
# Text to speech model inference.
|
| 411 |
+
|
| 412 |
+
with st.spinner(
|
| 413 |
+
text="Generating Audio..."
|
| 414 |
+
): # Spinner to keep the application interactive.
|
| 415 |
+
# Model inference.
|
| 416 |
+
|
| 417 |
+
generate_speech(response=recipe)
|
| 418 |
+
|
| 419 |
+
#########################################################################################################
|
| 420 |
+
# Display/Output the generated recipe in text and audio.
|
| 421 |
+
|
| 422 |
+
with st.expander(label="Recipe"):
|
| 423 |
+
st.write(recipe)
|
| 424 |
+
st.audio("audio.flac")
|
| 425 |
+
|
| 426 |
+
#########################################################################################################
|
| 427 |
+
|
| 428 |
+
# st.write(st.session_state)
|
| 429 |
+
|
| 430 |
+
#############################################################################################################
|
| 431 |
+
# Conversation with ChefBot.
|
| 432 |
+
|
| 433 |
+
if "recipe" in st.session_state:
|
| 434 |
+
#########################################################################################################
|
| 435 |
+
|
| 436 |
+
# Context for the ChefBot. Context is use to accumulate messages.
|
| 437 |
+
|
| 438 |
+
context = [
|
| 439 |
+
{
|
| 440 |
+
"role": "system",
|
| 441 |
+
"content": f"""
|
| 442 |
+
You are a ChefBot, an automated service to guide users on how to cook step by step.
|
| 443 |
+
You must sound like {chef}.
|
| 444 |
+
You must first greet the user.
|
| 445 |
+
You must help the user step by step with this recipe: {st.session_state['recipe']}.
|
| 446 |
+
After you have given all of the steps of the recipe,
|
| 447 |
+
you must thank the user and ask for user feedback both on the recipe and on your personality.
|
| 448 |
+
Do NOT repeat the steps of any recipe during the conversation with the user.""",
|
| 449 |
+
}
|
| 450 |
+
]
|
| 451 |
+
#########################################################################################################
|
| 452 |
+
|
| 453 |
+
# User input.
|
| 454 |
+
|
| 455 |
+
user_input = st.text_input(
|
| 456 |
+
label="User Input:",
|
| 457 |
+
key="user_input",
|
| 458 |
+
help="Follow up with the chef for any questions on the recipe.",
|
| 459 |
+
placeholder="Clarify step 1.",
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
#########################################################################################################
|
| 463 |
+
|
| 464 |
+
# Chat and Reset Chat buttons.
|
| 465 |
+
|
| 466 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
| 467 |
+
with col1:
|
| 468 |
+
button_chat = st.button("Chat")
|
| 469 |
+
with col5:
|
| 470 |
+
if st.button("Reset Chat"):
|
| 471 |
+
st.session_state.panels = []
|
| 472 |
+
user_input = False
|
| 473 |
+
#########################################################################################################
|
| 474 |
+
|
| 475 |
+
# Reverse the structure/way of displaying messages.
|
| 476 |
+
|
| 477 |
+
if "panels" not in st.session_state:
|
| 478 |
+
st.session_state.panels = []
|
| 479 |
+
|
| 480 |
+
#########################################################################################################
|
| 481 |
+
|
| 482 |
+
# If there is a user input or the chat button was clicked AND the input is not empty.
|
| 483 |
+
|
| 484 |
+
if (user_input or button_chat) and user_input != "":
|
| 485 |
+
# Context management.
|
| 486 |
+
prompt = user_input
|
| 487 |
+
context.append({"role": "user", "content": f"{prompt}"})
|
| 488 |
+
|
| 489 |
+
# OpenAI gpt-3.5-turbo model inference.
|
| 490 |
+
with st.spinner(text="Generating Response..."):
|
| 491 |
+
response = get_completion_from_messages(context)
|
| 492 |
+
|
| 493 |
+
# Text to speech model inference.
|
| 494 |
+
with st.spinner(text="Generating Audio..."):
|
| 495 |
+
generate_speech(response=response)
|
| 496 |
+
|
| 497 |
+
# Context management.
|
| 498 |
+
context.append({"role": "assistant", "content": f"{response}"})
|
| 499 |
+
|
| 500 |
+
# Appending the newly generated messages into the structure/way of displaying messages.
|
| 501 |
+
st.session_state.panels.append(("User:", prompt))
|
| 502 |
+
st.session_state.panels.append(("Assistant:", response))
|
| 503 |
+
|
| 504 |
+
#########################################################################################################
|
| 505 |
+
|
| 506 |
+
# Display/Output messages.
|
| 507 |
+
|
| 508 |
+
with st.expander("Conversation History", expanded=True):
|
| 509 |
+
for role, content in reversed(st.session_state.panels):
|
| 510 |
+
# User.
|
| 511 |
+
if role == "User:":
|
| 512 |
+
user = f"""<p align="left" style="font-family: monospace; font-size: 1rem;">
|
| 513 |
+
<b style="color:#dadada">π€{role}</b> {content}</p>"""
|
| 514 |
+
st.markdown(user, unsafe_allow_html=True)
|
| 515 |
+
# ChefBot.
|
| 516 |
+
else:
|
| 517 |
+
st.audio("audio.flac")
|
| 518 |
+
assistant = f"""<p align="left" style="font-family: monospace; font-size: 1rem;">
|
| 519 |
+
<b style="color:#dadada">π¨βπ³{chef}:</b> {content}</p>"""
|
| 520 |
+
st.markdown(assistant, unsafe_allow_html=True)
|
| 521 |
+
|
| 522 |
+
#############################################################################################################
|
| 523 |
+
except Exception as e:
|
| 524 |
+
# General exception/error handling.
|
| 525 |
+
|
| 526 |
+
st.error(e)
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
#############################################################################################################################
|
| 530 |
+
if __name__ == "__main__":
|
| 531 |
+
main()
|